{"title":"RSEA-MVGNN: Multi-view graph neural network with reliable structural enhancement and aggregation","authors":"Junyu Chen , Long Shi , Badong Chen","doi":"10.1016/j.inffus.2025.103143","DOIUrl":null,"url":null,"abstract":"<div><div>Graph Neural Networks (GNNs) have exhibited remarkable efficacy in learning from multi-view graph data. In the framework of multi-view graph neural networks, a critical challenge lies in effectively combining diverse views, where each view has distinct graph structure features (GSFs). Existing approaches to this challenge primarily focus on two aspects: (1) prioritizing the most important GSFs, (2) utilizing GNNs for feature aggregation. However, prioritizing the most important GSFs can lead to limited feature diversity, and existing GNN-based aggregation strategies process each view without considering view reliability. To address these issues, we propose a novel Multi-View Graph Neural Network with Reliable Structural Enhancement and Aggregation (RSEA-MVGNN). Firstly, we estimate view-specific uncertainty employing subjective logic. Based on this uncertainty, we design a reliable structural enhancement scheme by feature de-correlation algorithm. This approach enables each enhancement to focus on different GSFs, thereby achieving diverse feature representation in the enhanced structure. Secondly, the model learns view-specific beliefs and uncertainty as opinions, which are utilized to evaluate view reliability. Based on these opinions, the model enables high-reliability views to dominate GNN aggregation, thereby facilitating representation learning. Experimental results conducted on five real-world datasets demonstrate that RSEA-MVGNN outperforms several state-of-the-art GNN-based methods. Code is available at <span><span>http://github.com/junyu000/RSEA-MVGNN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"121 ","pages":"Article 103143"},"PeriodicalIF":14.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525002167","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Graph Neural Networks (GNNs) have exhibited remarkable efficacy in learning from multi-view graph data. In the framework of multi-view graph neural networks, a critical challenge lies in effectively combining diverse views, where each view has distinct graph structure features (GSFs). Existing approaches to this challenge primarily focus on two aspects: (1) prioritizing the most important GSFs, (2) utilizing GNNs for feature aggregation. However, prioritizing the most important GSFs can lead to limited feature diversity, and existing GNN-based aggregation strategies process each view without considering view reliability. To address these issues, we propose a novel Multi-View Graph Neural Network with Reliable Structural Enhancement and Aggregation (RSEA-MVGNN). Firstly, we estimate view-specific uncertainty employing subjective logic. Based on this uncertainty, we design a reliable structural enhancement scheme by feature de-correlation algorithm. This approach enables each enhancement to focus on different GSFs, thereby achieving diverse feature representation in the enhanced structure. Secondly, the model learns view-specific beliefs and uncertainty as opinions, which are utilized to evaluate view reliability. Based on these opinions, the model enables high-reliability views to dominate GNN aggregation, thereby facilitating representation learning. Experimental results conducted on five real-world datasets demonstrate that RSEA-MVGNN outperforms several state-of-the-art GNN-based methods. Code is available at http://github.com/junyu000/RSEA-MVGNN.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.