Dark channel map and union training strategy for object detection in foggy scenes

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhanqiang Huo , Sen Li , Sensen Meng , Yingxu Qiao , Shan Zhao , Luyao Liu
{"title":"Dark channel map and union training strategy for object detection in foggy scenes","authors":"Zhanqiang Huo ,&nbsp;Sen Li ,&nbsp;Sensen Meng ,&nbsp;Yingxu Qiao ,&nbsp;Shan Zhao ,&nbsp;Luyao Liu","doi":"10.1016/j.patrec.2025.03.024","DOIUrl":null,"url":null,"abstract":"<div><div>Most existing object detection methods in real-world hazy scenarios fail to handle the heterogeneous haze and treat clear images and hazy images as adversarial while ignoring the latent information beneficial in clear images for detection, resulting in sub-optimal performance. To alleviate the above problems, we propose a new dark channel map-guided detection paradigm (DG-Net) in an end-to-end manner and provide an interpretable idea for object detection in hazy scenes from an entirely new perspective. Specifically, we design a unique dark channel map-guided feature fusion (DGFF) module to handle the adverse impact of the heterogeneous haze, which enables the model to focus on potential regions that may contain detection objects adaptively, assign higher weights to these regions, and thus improve the network’s ability to learn and represent the features of hazy images. To more effectively utilize the latent features of clear images, we propose a new simple but effective union training strategy (UTS) that considers the clear images as a complement to the hazy images, which enables the DGFF module to work better. In addition, we introduce Focal loss and Self-calibrated convolutions to enhance the performance of the DG-Net. Extensive experiments show that DG-Net outperforms the state-of-the-art detection methods quantitatively and qualitatively, especially in real-world hazy datasets.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"192 ","pages":"Pages 79-85"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525001163","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Most existing object detection methods in real-world hazy scenarios fail to handle the heterogeneous haze and treat clear images and hazy images as adversarial while ignoring the latent information beneficial in clear images for detection, resulting in sub-optimal performance. To alleviate the above problems, we propose a new dark channel map-guided detection paradigm (DG-Net) in an end-to-end manner and provide an interpretable idea for object detection in hazy scenes from an entirely new perspective. Specifically, we design a unique dark channel map-guided feature fusion (DGFF) module to handle the adverse impact of the heterogeneous haze, which enables the model to focus on potential regions that may contain detection objects adaptively, assign higher weights to these regions, and thus improve the network’s ability to learn and represent the features of hazy images. To more effectively utilize the latent features of clear images, we propose a new simple but effective union training strategy (UTS) that considers the clear images as a complement to the hazy images, which enables the DGFF module to work better. In addition, we introduce Focal loss and Self-calibrated convolutions to enhance the performance of the DG-Net. Extensive experiments show that DG-Net outperforms the state-of-the-art detection methods quantitatively and qualitatively, especially in real-world hazy datasets.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信