Zhi-Jun Jiang , Zhen-Hui Luo , Jia-Xin Guo , Yun-Fei Du , Feng Jiang , Nai-Lu Shen , Tao Wang , Xu Liu , Jie Huang , Wen-Han Chen , Yang Zhou , Zhiyang Lyu , Xin Shen , Xin-Bing Cheng , Yuping Wu
{"title":"Thermal safety overview of silicon-carbon anode in lithium-ion batteries: Key parameters in determining the reactivity","authors":"Zhi-Jun Jiang , Zhen-Hui Luo , Jia-Xin Guo , Yun-Fei Du , Feng Jiang , Nai-Lu Shen , Tao Wang , Xu Liu , Jie Huang , Wen-Han Chen , Yang Zhou , Zhiyang Lyu , Xin Shen , Xin-Bing Cheng , Yuping Wu","doi":"10.1016/j.partic.2025.03.013","DOIUrl":null,"url":null,"abstract":"<div><div>The quest for high-energy-density lithium-ion batteries has led to the widespread adoption of silicon anodes, yet their safety, particularly regarding thermal runaway, remains a critical concern. Herein, the thermal safety overview of silicon-carbon anode is conducted to identify the determinants of materials reactivity and heat generation sources. In the hierarchical silicon-carbon anode, surface floating silicon without carbon protection is a serious hazard affecting the thermal safety, exhibiting a 77 % increase in heat release at 100 % state of charge. When the pouch cells with floating silicon are conducted in the test of accelerating rate calorimeter, the maximum temperature can be 875.2 °C (532.1 °C for samples without floating silicon). In addition, the thermal safety of graphite anodes blending with different ratios of silicon-carbon electrode are also explored, confirming the potential safety risks of high-silicon-content lithium-ion batteries. This work presents comprehensive understandings on the thermal features of the high-capacity silicon-carbon anode, which is pivotal for enhancing the safety of next-generation silicon-based high-energy-density batteries.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"100 ","pages":"Pages 178-185"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200125000872","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The quest for high-energy-density lithium-ion batteries has led to the widespread adoption of silicon anodes, yet their safety, particularly regarding thermal runaway, remains a critical concern. Herein, the thermal safety overview of silicon-carbon anode is conducted to identify the determinants of materials reactivity and heat generation sources. In the hierarchical silicon-carbon anode, surface floating silicon without carbon protection is a serious hazard affecting the thermal safety, exhibiting a 77 % increase in heat release at 100 % state of charge. When the pouch cells with floating silicon are conducted in the test of accelerating rate calorimeter, the maximum temperature can be 875.2 °C (532.1 °C for samples without floating silicon). In addition, the thermal safety of graphite anodes blending with different ratios of silicon-carbon electrode are also explored, confirming the potential safety risks of high-silicon-content lithium-ion batteries. This work presents comprehensive understandings on the thermal features of the high-capacity silicon-carbon anode, which is pivotal for enhancing the safety of next-generation silicon-based high-energy-density batteries.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.