Elytra-inspired zirconium phosphate nanonetwork: Toward high-quality osseointegration and physical-chemical-mechanical bond at the interface for zirconia-based dental materials
Shuyi Wu , Yingyue Sun , Qihong Zhang , Wen Si , Peng Gao , Lei Lu , Zhennan Deng , Lihua Xu , Xinkun Shen , Jinsong Liu
{"title":"Elytra-inspired zirconium phosphate nanonetwork: Toward high-quality osseointegration and physical-chemical-mechanical bond at the interface for zirconia-based dental materials","authors":"Shuyi Wu , Yingyue Sun , Qihong Zhang , Wen Si , Peng Gao , Lei Lu , Zhennan Deng , Lihua Xu , Xinkun Shen , Jinsong Liu","doi":"10.1016/j.bioactmat.2025.03.028","DOIUrl":null,"url":null,"abstract":"<div><div>Yttria-stabilized zirconia (YSZ) is widely used in dental implants and prostheses due to its excellent aesthetic and restorative properties. However, its bio-inert surface limits early osseointegration and weakens bonding strengths with porcelain veneer/resin cement. Inspired by the structure of beetle elytra, this work proposes a novel strategy involving a self-assembled trabecular-honeycomb biomimetic zirconium phosphate (ZrP) nanonetwork to modify YSZ surfaces. This approach simultaneously enhances energy dissipation, interfacial bonding, and osseointegration. The pore size of ZrP nanonetwork was precisely controlled by adjusting reaction temperatures (120 °C and 160 °C) and phosphoric acid concentrations (1.0 wt% and 2.5 wt%). Compared to conventional YSZ, the ZrP nanonetworks achieved remarkable improvements in bond strength, showing increases of 111 % with porcelain veneer and 336 % with resin cement. These enhancements are attributed to multiscale physical-chemical-mechanical interactions, including micromechanical anchoring, chemical bonding via phosphate groups, and energy dissipation through topological optimization. <em>In vitro</em> studies demonstrated that large-pore-size nanonetworks promote osteogenic differentiation of osteoblasts and modulate macrophage polarization toward the M2 phenotype, fostering an immune environment conducive to bone regeneration. <em>In vivo</em> experiments further validated the superior osseointegration and bone regeneration capacities of the large-pore-size ZrP nanonetwork. Collectively, this biomimetic ZrP nanonetwork-modified YSZ, with its exceptional physical-chemical-mechanical bonding properties, osseointegration potential, and immune-modulating capabilities, represents a groundbreaking advancement in zirconia-based material for dental implants and prostheses.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"50 ","pages":"Pages 116-133"},"PeriodicalIF":18.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25001380","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Yttria-stabilized zirconia (YSZ) is widely used in dental implants and prostheses due to its excellent aesthetic and restorative properties. However, its bio-inert surface limits early osseointegration and weakens bonding strengths with porcelain veneer/resin cement. Inspired by the structure of beetle elytra, this work proposes a novel strategy involving a self-assembled trabecular-honeycomb biomimetic zirconium phosphate (ZrP) nanonetwork to modify YSZ surfaces. This approach simultaneously enhances energy dissipation, interfacial bonding, and osseointegration. The pore size of ZrP nanonetwork was precisely controlled by adjusting reaction temperatures (120 °C and 160 °C) and phosphoric acid concentrations (1.0 wt% and 2.5 wt%). Compared to conventional YSZ, the ZrP nanonetworks achieved remarkable improvements in bond strength, showing increases of 111 % with porcelain veneer and 336 % with resin cement. These enhancements are attributed to multiscale physical-chemical-mechanical interactions, including micromechanical anchoring, chemical bonding via phosphate groups, and energy dissipation through topological optimization. In vitro studies demonstrated that large-pore-size nanonetworks promote osteogenic differentiation of osteoblasts and modulate macrophage polarization toward the M2 phenotype, fostering an immune environment conducive to bone regeneration. In vivo experiments further validated the superior osseointegration and bone regeneration capacities of the large-pore-size ZrP nanonetwork. Collectively, this biomimetic ZrP nanonetwork-modified YSZ, with its exceptional physical-chemical-mechanical bonding properties, osseointegration potential, and immune-modulating capabilities, represents a groundbreaking advancement in zirconia-based material for dental implants and prostheses.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.