Jing Wang , Xinwei Yang , Ruiping Zhang , Fengling Yang , Frédéric Marias , Fei Wang
{"title":"NO reduction performance of pyrolyzed biomass char: Effects of dechlorination removal pretreatments","authors":"Jing Wang , Xinwei Yang , Ruiping Zhang , Fengling Yang , Frédéric Marias , Fei Wang","doi":"10.1016/j.cjche.2024.10.041","DOIUrl":null,"url":null,"abstract":"<div><div>In the current era of renewable energy prominence, the wide operational capacity of coal-fired boilers has emerged as crucial for ensuring the sustainability of power plants. However, attaining ultra-low nitrogen oxides (NOx) emissions during periods of low-load operations presents a significant and persistent challenge for coal power enterprises. While techniques such as biomass re-burning and advanced re-burning have shown promise in enhancing NO reduction efficiency above 800 °C, their elevated levels of chlorine (Cl) and alkali metals pose potential risks to boiler equipment integrity. Therefore, this study proposes the utilization of biomass char derived from pyrolysis as a dual-purpose solution to enhance NO reduction efficiency while safeguarding boiler integrity during low-load operations. Findings indicate that pyrolysis treatment effectively reduces the Cl and alkali metal content of biomass. Specifically, it was determined that biomass char produced through deeply pyrolysis at 300 °C achieves the highest NO reduction efficiency while minimizing the presence of harmful components. At a reduction temperature of 700 °C, both re-burning and advanced re-burning techniques exhibit NO reduction efficiencies of 55.90% and 62.22%, which is already an ideal deficiency at low temperatures. The addition of water vapor at 700–800 °C obviously avoids the oxidation of ammonia to NO in advanced re-burning. Upon further analysis, denitrification efficiency in biomass char re-burning and advanced re-burning is influenced not only by volatile content but also by physicochemical properties such as porosity and surface functional group distribution under certain reaction conditions. This study provides a theoretical framework for the industrial implementation of biomass char for NO control in coal-fired power plants, offering insights into optimizing NO reduction efficiency while mitigating potential risks to boiler equipment.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"80 ","pages":"Pages 119-129"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954125000655","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the current era of renewable energy prominence, the wide operational capacity of coal-fired boilers has emerged as crucial for ensuring the sustainability of power plants. However, attaining ultra-low nitrogen oxides (NOx) emissions during periods of low-load operations presents a significant and persistent challenge for coal power enterprises. While techniques such as biomass re-burning and advanced re-burning have shown promise in enhancing NO reduction efficiency above 800 °C, their elevated levels of chlorine (Cl) and alkali metals pose potential risks to boiler equipment integrity. Therefore, this study proposes the utilization of biomass char derived from pyrolysis as a dual-purpose solution to enhance NO reduction efficiency while safeguarding boiler integrity during low-load operations. Findings indicate that pyrolysis treatment effectively reduces the Cl and alkali metal content of biomass. Specifically, it was determined that biomass char produced through deeply pyrolysis at 300 °C achieves the highest NO reduction efficiency while minimizing the presence of harmful components. At a reduction temperature of 700 °C, both re-burning and advanced re-burning techniques exhibit NO reduction efficiencies of 55.90% and 62.22%, which is already an ideal deficiency at low temperatures. The addition of water vapor at 700–800 °C obviously avoids the oxidation of ammonia to NO in advanced re-burning. Upon further analysis, denitrification efficiency in biomass char re-burning and advanced re-burning is influenced not only by volatile content but also by physicochemical properties such as porosity and surface functional group distribution under certain reaction conditions. This study provides a theoretical framework for the industrial implementation of biomass char for NO control in coal-fired power plants, offering insights into optimizing NO reduction efficiency while mitigating potential risks to boiler equipment.
期刊介绍:
The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors.
The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.