Coupling thermal and maturity histories of the Gulong shale oil reservoir in the Songliao Basin: Insights from vitrinite reflectance and apatite fission track

Xuefeng Bai , Junhui Li , Xiuli Fu , Min Xu , Yue Bai , Yangxin Su , Kunning Cui , Qingxia Xu , Zongbao Liu , Yuchen Liu
{"title":"Coupling thermal and maturity histories of the Gulong shale oil reservoir in the Songliao Basin: Insights from vitrinite reflectance and apatite fission track","authors":"Xuefeng Bai ,&nbsp;Junhui Li ,&nbsp;Xiuli Fu ,&nbsp;Min Xu ,&nbsp;Yue Bai ,&nbsp;Yangxin Su ,&nbsp;Kunning Cui ,&nbsp;Qingxia Xu ,&nbsp;Zongbao Liu ,&nbsp;Yuchen Liu","doi":"10.1016/j.uncres.2025.100178","DOIUrl":null,"url":null,"abstract":"<div><div>The coupling relationship between the thermal state and maturation during the geological historical period is critical for shale oil-gas exploration because their present distribution characteristics are not probably the same. In this study, the thermal–maturity history of the shale oil reservoir in the Qingshankou Formation of the Gulong Sag, Songliao Basin, was established, and their coupling relationship was analyzed using vitrinite reflectance (<em>R</em>o) and apatite fission track (AFT) data. The results revealed that the Gulong Sag exhibits a high thermal state, with temperatures decreasing from central to peripheral regions. In contrast, the maturity of organic matter exhibits an opposite trend; for example, GY8 well in the central region has low temperatures but high maturity. The thermal–maturity history constructed using the <em>R</em>o and AFT data indicates two critical developmental stages for shale oil reservoirs between 60 and 90 Ma: the late Mingshui and Nenjiang movement stages. The former stage had a considerably greater influence on shale reservoir formation than the latter stage, which accelerated organic matter maturation rapidly because of the greater burial depth and longer duration. Additionally, the Gulong Sag has a low height-to-width ratio, and the thermal state plane distribution characteristics are influenced to some extent by the concave–convex structures. Therefore, the thermal structure at the end of the Mingshui stage is particularly important, and high temperatures in concave areas are likely the most desirable areas for the formation of shale oil reservoirs during that period. This understanding can also guide shale oil exploration in regions with similar geological settings.</div></div>","PeriodicalId":101263,"journal":{"name":"Unconventional Resources","volume":"6 ","pages":"Article 100178"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unconventional Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666519025000445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The coupling relationship between the thermal state and maturation during the geological historical period is critical for shale oil-gas exploration because their present distribution characteristics are not probably the same. In this study, the thermal–maturity history of the shale oil reservoir in the Qingshankou Formation of the Gulong Sag, Songliao Basin, was established, and their coupling relationship was analyzed using vitrinite reflectance (Ro) and apatite fission track (AFT) data. The results revealed that the Gulong Sag exhibits a high thermal state, with temperatures decreasing from central to peripheral regions. In contrast, the maturity of organic matter exhibits an opposite trend; for example, GY8 well in the central region has low temperatures but high maturity. The thermal–maturity history constructed using the Ro and AFT data indicates two critical developmental stages for shale oil reservoirs between 60 and 90 Ma: the late Mingshui and Nenjiang movement stages. The former stage had a considerably greater influence on shale reservoir formation than the latter stage, which accelerated organic matter maturation rapidly because of the greater burial depth and longer duration. Additionally, the Gulong Sag has a low height-to-width ratio, and the thermal state plane distribution characteristics are influenced to some extent by the concave–convex structures. Therefore, the thermal structure at the end of the Mingshui stage is particularly important, and high temperatures in concave areas are likely the most desirable areas for the formation of shale oil reservoirs during that period. This understanding can also guide shale oil exploration in regions with similar geological settings.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信