Sen Liu , Zhendong Ren , Manqi Yan , Wei Ye , Yong Hu
{"title":"Strategies to enhance the penetration of nanomedicine in solid tumors","authors":"Sen Liu , Zhendong Ren , Manqi Yan , Wei Ye , Yong Hu","doi":"10.1016/j.biomaterials.2025.123315","DOIUrl":null,"url":null,"abstract":"<div><div>Nanomedicine was previously regarded as a promising solution in the battle against cancer. Over the past few decades, extensive research has been conducted to exploit nanomedicine for overcoming tumors. Unfortunately, despite these efforts, nanomedicine has not yet demonstrated its ability to cure tumors, and the research on nanomedicine has reached a bottleneck. For a significant period of time, drug delivery strategies have primarily focused on targeting nanomedicine delivery to tumors while neglecting its redistribution within solid tumors. The uneven distribution of nanomedicine within solid tumors results in limited therapeutic effects on most tumor cells and significantly hampers the efficiency of drug delivery and treatment outcomes. Therefore, this review discusses the challenges faced by nanomedicine in penetrating solid tumors and provides an overview of current nanotechnology strategies (alleviating penetration resistance, size regulation, tumor cell transport, and nanomotors) that facilitate enhanced penetration of nanomedicine into solid tumors. Additionally, we discussed the potential role of nanobionics in promoting effective penetration of nanomedicine.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"321 ","pages":"Article 123315"},"PeriodicalIF":12.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225002340","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanomedicine was previously regarded as a promising solution in the battle against cancer. Over the past few decades, extensive research has been conducted to exploit nanomedicine for overcoming tumors. Unfortunately, despite these efforts, nanomedicine has not yet demonstrated its ability to cure tumors, and the research on nanomedicine has reached a bottleneck. For a significant period of time, drug delivery strategies have primarily focused on targeting nanomedicine delivery to tumors while neglecting its redistribution within solid tumors. The uneven distribution of nanomedicine within solid tumors results in limited therapeutic effects on most tumor cells and significantly hampers the efficiency of drug delivery and treatment outcomes. Therefore, this review discusses the challenges faced by nanomedicine in penetrating solid tumors and provides an overview of current nanotechnology strategies (alleviating penetration resistance, size regulation, tumor cell transport, and nanomotors) that facilitate enhanced penetration of nanomedicine into solid tumors. Additionally, we discussed the potential role of nanobionics in promoting effective penetration of nanomedicine.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.