Time-resolved T1 and T2 contrast for enhanced accuracy in MRI tumor detection

IF 12.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Zhongzhong Lu , Jincong Yan , Jianxian Zeng , Ruihao Zhang , Mingsheng Xu , Jihuan Liu , Lina Sun , Guangyue Zu , Xiaomin Chen , Ye Zhang , Renjun Pei , Yi Cao
{"title":"Time-resolved T1 and T2 contrast for enhanced accuracy in MRI tumor detection","authors":"Zhongzhong Lu ,&nbsp;Jincong Yan ,&nbsp;Jianxian Zeng ,&nbsp;Ruihao Zhang ,&nbsp;Mingsheng Xu ,&nbsp;Jihuan Liu ,&nbsp;Lina Sun ,&nbsp;Guangyue Zu ,&nbsp;Xiaomin Chen ,&nbsp;Ye Zhang ,&nbsp;Renjun Pei ,&nbsp;Yi Cao","doi":"10.1016/j.biomaterials.2025.123313","DOIUrl":null,"url":null,"abstract":"<div><div>Stimuli-responsive contrast agents (CAs) have shown great promise in enhancing magnetic resonance imaging (MRI) for more accurate tumor diagnosis. However, current CAs still face challenges in achieving high accuracy due to their low specificity and contrast signals being confounded by potential endogenous MRI artifacts. Herein, an extremely small iron oxide nanoparticle (ESIONP)-based smart responsive MRI contrast agent (LESPH) is proposed, which is meticulously designed with sequential dual biochemical stimuli-initiated, time-resolved T<sub>1</sub> and T<sub>2</sub> contrast presentation, ensuring high tumor specificity while minimizing interference from endogenous artifacts. LESPH is constructed using emulsion solvent evaporation by assembling poly(2-(hexamethyleneimino) ethyl methacrylate) terminally conjugated with a disulfide bond-linked catechol group (DSPH)-modified ESIONPs, with lauryl betaine serving as a surfactant. When LESPH undergoes sequential responses to the weak acidity and high-concentration glutathione (GSH) in the tumor microenvironment, it experiences an extremely rapid transition from sparse ESIONP assemblies to dispersed ESIONPs, followed by a slower transition to closely aggregated ones, concomitantly providing distinguishable brightening and darkening contrast enhancement at the tumor location on different time scales. By virtue of its sequential dual responsiveness and time-resolved distinguishable contrast enhancements, LESPH successfully detects tumors with extremely high accuracy, providing a novel paradigm for the precise medical diagnosis of cancer.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"321 ","pages":"Article 123313"},"PeriodicalIF":12.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225002327","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Stimuli-responsive contrast agents (CAs) have shown great promise in enhancing magnetic resonance imaging (MRI) for more accurate tumor diagnosis. However, current CAs still face challenges in achieving high accuracy due to their low specificity and contrast signals being confounded by potential endogenous MRI artifacts. Herein, an extremely small iron oxide nanoparticle (ESIONP)-based smart responsive MRI contrast agent (LESPH) is proposed, which is meticulously designed with sequential dual biochemical stimuli-initiated, time-resolved T1 and T2 contrast presentation, ensuring high tumor specificity while minimizing interference from endogenous artifacts. LESPH is constructed using emulsion solvent evaporation by assembling poly(2-(hexamethyleneimino) ethyl methacrylate) terminally conjugated with a disulfide bond-linked catechol group (DSPH)-modified ESIONPs, with lauryl betaine serving as a surfactant. When LESPH undergoes sequential responses to the weak acidity and high-concentration glutathione (GSH) in the tumor microenvironment, it experiences an extremely rapid transition from sparse ESIONP assemblies to dispersed ESIONPs, followed by a slower transition to closely aggregated ones, concomitantly providing distinguishable brightening and darkening contrast enhancement at the tumor location on different time scales. By virtue of its sequential dual responsiveness and time-resolved distinguishable contrast enhancements, LESPH successfully detects tumors with extremely high accuracy, providing a novel paradigm for the precise medical diagnosis of cancer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials
Biomaterials 工程技术-材料科学:生物材料
CiteScore
26.00
自引率
2.90%
发文量
565
审稿时长
46 days
期刊介绍: Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信