Improving the plasticity of transition-metal-based high-entropy bulk metallic glasses via Ag-induced phase separation

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xueru Fan , Lei Xie , Qiang Li , Chuntao Chang
{"title":"Improving the plasticity of transition-metal-based high-entropy bulk metallic glasses via Ag-induced phase separation","authors":"Xueru Fan ,&nbsp;Lei Xie ,&nbsp;Qiang Li ,&nbsp;Chuntao Chang","doi":"10.1016/j.msea.2025.148281","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy bulk metallic glasses (HE-BMGs) exhibit unique combinations of mechanical and magnetic properties due to their complex compositions. This study investigates the effects of minor Ag additions on the glass-forming ability (GFA), thermal stability, and mechanical behavior of [Fe<sub>0.25</sub>Co<sub>0.25</sub>Ni<sub>0.25</sub>(Si<sub>0.3</sub>B<sub>0.7</sub>)<sub>0.25</sub>]<sub>100-x</sub>Ag<sub>x</sub> (x = 0, 0.1, 0.3, 0.5 at.%) HE-BMGs. Results indicate that Ag promotes phase separation, introducing nanoscale heterogeneity, which enhances plasticity and mechanical performance. Optimal Ag content (0.3 at.%) achieved an 15.7 % plastic strain and 3875 MPa yield strength, attributed to the formation of short-range ordered structures and shear transformation zones. These nanoscale heterogeneities acted as pinning sites, facilitating shear-band branching and stable deformation. Excessive Ag content, however, induced brittle phase formation and structural stress, reducing plasticity. Furthermore, the saturation magnetization peaked at 0.84 T with minimal degradation of GFA. These findings highlight the potential of controlled phase separation in designing HE-BMGs with superior strength-ductility synergy for advanced structural applications.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"932 ","pages":"Article 148281"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325005052","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy bulk metallic glasses (HE-BMGs) exhibit unique combinations of mechanical and magnetic properties due to their complex compositions. This study investigates the effects of minor Ag additions on the glass-forming ability (GFA), thermal stability, and mechanical behavior of [Fe0.25Co0.25Ni0.25(Si0.3B0.7)0.25]100-xAgx (x = 0, 0.1, 0.3, 0.5 at.%) HE-BMGs. Results indicate that Ag promotes phase separation, introducing nanoscale heterogeneity, which enhances plasticity and mechanical performance. Optimal Ag content (0.3 at.%) achieved an 15.7 % plastic strain and 3875 MPa yield strength, attributed to the formation of short-range ordered structures and shear transformation zones. These nanoscale heterogeneities acted as pinning sites, facilitating shear-band branching and stable deformation. Excessive Ag content, however, induced brittle phase formation and structural stress, reducing plasticity. Furthermore, the saturation magnetization peaked at 0.84 T with minimal degradation of GFA. These findings highlight the potential of controlled phase separation in designing HE-BMGs with superior strength-ductility synergy for advanced structural applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信