{"title":"Improving the plasticity of transition-metal-based high-entropy bulk metallic glasses via Ag-induced phase separation","authors":"Xueru Fan , Lei Xie , Qiang Li , Chuntao Chang","doi":"10.1016/j.msea.2025.148281","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy bulk metallic glasses (HE-BMGs) exhibit unique combinations of mechanical and magnetic properties due to their complex compositions. This study investigates the effects of minor Ag additions on the glass-forming ability (GFA), thermal stability, and mechanical behavior of [Fe<sub>0.25</sub>Co<sub>0.25</sub>Ni<sub>0.25</sub>(Si<sub>0.3</sub>B<sub>0.7</sub>)<sub>0.25</sub>]<sub>100-x</sub>Ag<sub>x</sub> (x = 0, 0.1, 0.3, 0.5 at.%) HE-BMGs. Results indicate that Ag promotes phase separation, introducing nanoscale heterogeneity, which enhances plasticity and mechanical performance. Optimal Ag content (0.3 at.%) achieved an 15.7 % plastic strain and 3875 MPa yield strength, attributed to the formation of short-range ordered structures and shear transformation zones. These nanoscale heterogeneities acted as pinning sites, facilitating shear-band branching and stable deformation. Excessive Ag content, however, induced brittle phase formation and structural stress, reducing plasticity. Furthermore, the saturation magnetization peaked at 0.84 T with minimal degradation of GFA. These findings highlight the potential of controlled phase separation in designing HE-BMGs with superior strength-ductility synergy for advanced structural applications.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"932 ","pages":"Article 148281"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325005052","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy bulk metallic glasses (HE-BMGs) exhibit unique combinations of mechanical and magnetic properties due to their complex compositions. This study investigates the effects of minor Ag additions on the glass-forming ability (GFA), thermal stability, and mechanical behavior of [Fe0.25Co0.25Ni0.25(Si0.3B0.7)0.25]100-xAgx (x = 0, 0.1, 0.3, 0.5 at.%) HE-BMGs. Results indicate that Ag promotes phase separation, introducing nanoscale heterogeneity, which enhances plasticity and mechanical performance. Optimal Ag content (0.3 at.%) achieved an 15.7 % plastic strain and 3875 MPa yield strength, attributed to the formation of short-range ordered structures and shear transformation zones. These nanoscale heterogeneities acted as pinning sites, facilitating shear-band branching and stable deformation. Excessive Ag content, however, induced brittle phase formation and structural stress, reducing plasticity. Furthermore, the saturation magnetization peaked at 0.84 T with minimal degradation of GFA. These findings highlight the potential of controlled phase separation in designing HE-BMGs with superior strength-ductility synergy for advanced structural applications.
期刊介绍:
Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.