Effects of Saccharomyces cerevisiae fermentation-derived postbiotics supplementation in sows and piglets' diet on intestinal morphology, and intestinal barrier function in weaned pigs in an intensive pig production system

IF 1.4 3区 农林科学 Q4 IMMUNOLOGY
Pham Hoang Son Hung, Ho Thi Dung, Le Duc Thao, Nguyen Van Chao, Nguyen Thi Hoa, Bui Thi Hien, Anjan Mondal, Victor Nsereko, Le Dinh Phung
{"title":"Effects of Saccharomyces cerevisiae fermentation-derived postbiotics supplementation in sows and piglets' diet on intestinal morphology, and intestinal barrier function in weaned pigs in an intensive pig production system","authors":"Pham Hoang Son Hung,&nbsp;Ho Thi Dung,&nbsp;Le Duc Thao,&nbsp;Nguyen Van Chao,&nbsp;Nguyen Thi Hoa,&nbsp;Bui Thi Hien,&nbsp;Anjan Mondal,&nbsp;Victor Nsereko,&nbsp;Le Dinh Phung","doi":"10.1016/j.vetimm.2025.110934","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluates the effects of <em>Saccharomyces cerevisiae</em> fermentation-derived postbiotics (SCFP) supplementation on diarrhea incidence, small intestinal morphology, and expression of tight junction genes in piglets. The study compared three groups: a control group (CON), which received a standard basal diet; a standard basal control diet containing 1.0 kg/mT of Beta-glucan 50 % (BG); and a standard basal control diet containing 2.0 kg/mT of SCFP (Diamond V XPC). The experimental design involved feeding the diets to the sows from the day when they were inseminated until their piglets were weaned and to piglets from birth to weaning. Diarrhea incidence was monitored, intestinal morphology was assessed, and gene expression of tight junction proteins (Claudin-1, Claudin-2, Occludin, and ZO-1) and inflammatory cytokines (IL-1β) was analyzed using qPCR. Results revealed that SCFP supplementation significantly reduced diarrhea incidence and upregulated the expression of tight junction proteins Claudin-1 (1.61-fold) and Occludin (1.90-fold) compared to CON. These improvements were not associated with changes in intestinal morphology. BG supplementation showed intermediate effects on tight junction gene expression but did not differ significantly from CON. These findings highlight the potential of SCFP as a dietary supplement to enhance gastrointestinal health in piglets by strengthening the intestinal epithelial barrier and reducing pathogen translocation. The study underscores the efficacy of SCFP in improving gut health without altering intestinal structure, offering an effective approach to manage pre-weaning diarrhea. Future studies are needed to explore the long-term impact of SCFP on growth performance and immunity.</div></div>","PeriodicalId":23511,"journal":{"name":"Veterinary immunology and immunopathology","volume":"283 ","pages":"Article 110934"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary immunology and immunopathology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165242725000546","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the effects of Saccharomyces cerevisiae fermentation-derived postbiotics (SCFP) supplementation on diarrhea incidence, small intestinal morphology, and expression of tight junction genes in piglets. The study compared three groups: a control group (CON), which received a standard basal diet; a standard basal control diet containing 1.0 kg/mT of Beta-glucan 50 % (BG); and a standard basal control diet containing 2.0 kg/mT of SCFP (Diamond V XPC). The experimental design involved feeding the diets to the sows from the day when they were inseminated until their piglets were weaned and to piglets from birth to weaning. Diarrhea incidence was monitored, intestinal morphology was assessed, and gene expression of tight junction proteins (Claudin-1, Claudin-2, Occludin, and ZO-1) and inflammatory cytokines (IL-1β) was analyzed using qPCR. Results revealed that SCFP supplementation significantly reduced diarrhea incidence and upregulated the expression of tight junction proteins Claudin-1 (1.61-fold) and Occludin (1.90-fold) compared to CON. These improvements were not associated with changes in intestinal morphology. BG supplementation showed intermediate effects on tight junction gene expression but did not differ significantly from CON. These findings highlight the potential of SCFP as a dietary supplement to enhance gastrointestinal health in piglets by strengthening the intestinal epithelial barrier and reducing pathogen translocation. The study underscores the efficacy of SCFP in improving gut health without altering intestinal structure, offering an effective approach to manage pre-weaning diarrhea. Future studies are needed to explore the long-term impact of SCFP on growth performance and immunity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
5.60%
发文量
79
审稿时长
70 days
期刊介绍: The journal reports basic, comparative and clinical immunology as they pertain to the animal species designated here: livestock, poultry, and fish species that are major food animals and companion animals such as cats, dogs, horses and camels, and wildlife species that act as reservoirs for food, companion or human infectious diseases, or as models for human disease. Rodent models of infectious diseases that are of importance in the animal species indicated above,when the disease requires a level of containment that is not readily available for larger animal experimentation (ABSL3), will be considered. Papers on rabbits, lizards, guinea pigs, badgers, armadillos, elephants, antelope, and buffalo will be reviewed if the research advances our fundamental understanding of immunology, or if they act as a reservoir of infectious disease for the primary animal species designated above, or for humans. Manuscripts employing other species will be reviewed if justified as fitting into the categories above. The following topics are appropriate: biology of cells and mechanisms of the immune system, immunochemistry, immunodeficiencies, immunodiagnosis, immunogenetics, immunopathology, immunology of infectious disease and tumors, immunoprophylaxis including vaccine development and delivery, immunological aspects of pregnancy including passive immunity, autoimmuity, neuroimmunology, and transplanatation immunology. Manuscripts that describe new genes and development of tools such as monoclonal antibodies are also of interest when part of a larger biological study. Studies employing extracts or constituents (plant extracts, feed additives or microbiome) must be sufficiently defined to be reproduced in other laboratories and also provide evidence for possible mechanisms and not simply show an effect on the immune system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信