Degradation and expansion of lithium-ion batteries with silicon/graphite anodes: Impact of pretension, temperature, C-rate and state-of-charge window

IF 15 1区 工程技术 Q1 ENERGY & FUELS
Zhiwen Wan , Sravan Pannala , Charles Solbrig , Taylor R. Garrick , Anna G. Stefanopoulou , Jason B. Siegel
{"title":"Degradation and expansion of lithium-ion batteries with silicon/graphite anodes: Impact of pretension, temperature, C-rate and state-of-charge window","authors":"Zhiwen Wan ,&nbsp;Sravan Pannala ,&nbsp;Charles Solbrig ,&nbsp;Taylor R. Garrick ,&nbsp;Anna G. Stefanopoulou ,&nbsp;Jason B. Siegel","doi":"10.1016/j.etran.2025.100416","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-ion batteries with silicon/graphite (Si/Gr) anodes achieve higher energy densities but face challenges such as rapid capacity fade, resistance growth, and complex expansion behavior under various cycling conditions. This study systematically addresses these challenges through a comprehensive test matrix to investigate the effects of pressure, temperature, state-of-charge (SoC) windows, and charge rates (C-rates) on the evolution of expansion, resistance, and capacity behavior over the lifetime of the battery. Increasing the applied pressure between 34 and 172 kPa reduced both reversible and irreversible expansion per cycle, as well as resistance growth over time, without significantly impacting capacity fade. Electrochemical Impedance Spectroscopy (EIS) confirmed that increased pressure lowered initial solution resistance and mitigated the further growth of the solution and solid electrolyte interphase (SEI) resistance. Elevated temperature (45°C) extended battery cycle life despite an initial increase in resistance. The lifetime impedance increase under 45°C was dominated by SEI resistance. Consistent with prior studies, operating in a narrow SoC window at high SoC minimized capacity loss. Additionally, charge rates up to 2C had a limited effect on the overall degradation trends. Incremental capacity analysis (ICA) and differential voltage analysis (DVA) identified lithium inventory loss (LLI) as the primary cause of pre-knee degradation, whereas post-knee degradation resulted from a combination of LLI and anode-active material loss, particularly silicon. The deeper understanding of degradation mechanisms in batteries with Si/Gr anodes provided by this work enables the optimal packaging design and selection of operating conditions for the battery management system to extend battery cycle life.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"24 ","pages":"Article 100416"},"PeriodicalIF":15.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116825000232","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries with silicon/graphite (Si/Gr) anodes achieve higher energy densities but face challenges such as rapid capacity fade, resistance growth, and complex expansion behavior under various cycling conditions. This study systematically addresses these challenges through a comprehensive test matrix to investigate the effects of pressure, temperature, state-of-charge (SoC) windows, and charge rates (C-rates) on the evolution of expansion, resistance, and capacity behavior over the lifetime of the battery. Increasing the applied pressure between 34 and 172 kPa reduced both reversible and irreversible expansion per cycle, as well as resistance growth over time, without significantly impacting capacity fade. Electrochemical Impedance Spectroscopy (EIS) confirmed that increased pressure lowered initial solution resistance and mitigated the further growth of the solution and solid electrolyte interphase (SEI) resistance. Elevated temperature (45°C) extended battery cycle life despite an initial increase in resistance. The lifetime impedance increase under 45°C was dominated by SEI resistance. Consistent with prior studies, operating in a narrow SoC window at high SoC minimized capacity loss. Additionally, charge rates up to 2C had a limited effect on the overall degradation trends. Incremental capacity analysis (ICA) and differential voltage analysis (DVA) identified lithium inventory loss (LLI) as the primary cause of pre-knee degradation, whereas post-knee degradation resulted from a combination of LLI and anode-active material loss, particularly silicon. The deeper understanding of degradation mechanisms in batteries with Si/Gr anodes provided by this work enables the optimal packaging design and selection of operating conditions for the battery management system to extend battery cycle life.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Etransportation
Etransportation Engineering-Automotive Engineering
CiteScore
19.80
自引率
12.60%
发文量
57
审稿时长
39 days
期刊介绍: eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation. The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment. Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信