Anqing Li , Ripeng Jiang , Ruiqing Li , Aolei Fu , Li Zhang , Lihua Zhang
{"title":"Effect of low-intensity ultrasound on grain refinement and heterogeneous nucleation mechanism of 2219 Al alloy","authors":"Anqing Li , Ripeng Jiang , Ruiqing Li , Aolei Fu , Li Zhang , Lihua Zhang","doi":"10.1016/j.ultsonch.2025.107341","DOIUrl":null,"url":null,"abstract":"<div><div>The ultrasonic cavitation and acoustic streaming have long been regarded as the dominant mechanisms for refining the solidification microstructure of Aluminum (Al) alloys. This work investigated the effects of low-intensity ultrasound on the solidification microstructure of 2219 Al alloy by setting an ultrasonic application angle of 15° and with the different depths (30 mm, 70 mm, and 110 mm). The experimental results show that low-intensity ultrasound can also achieve a significant refining effect on the microstructure. Comparative analysis of solidified microstructures across multiple samples revealed, for the first time, that low-intensity ultrasound refines grain morphology primarily through enhanced heterogeneous nucleation. By establishing a theoretical model between acoustic intensity (<span><math><msub><mi>I</mi><mi>e</mi></msub></math></span>) and heterogeneous nucleation energy (<span><math><mrow><mi>Δ</mi><msup><mrow><mi>G</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></math></span>), the required low-intensity acoustic pressure amplitude (<span><math><msubsup><mi>P</mi><mrow><mi>a</mi></mrow><mo>′</mo></msubsup></math></span>) for heterogeneous nucleation was determined. The calculation results are in good agreement with the experimental conclusions, thereby proposing a new mechanism for ultrasound to improve solidification microstructures. This work demonstrates that the ultrasonic cavitation and acoustic streaming are not necessary conditions for refining grain structures. Low-intensity ultrasound can also promote the refinement of Al alloy grain structures when satisfying the critical nucleation acoustic pressure conditions.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"117 ","pages":"Article 107341"},"PeriodicalIF":8.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725001208","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The ultrasonic cavitation and acoustic streaming have long been regarded as the dominant mechanisms for refining the solidification microstructure of Aluminum (Al) alloys. This work investigated the effects of low-intensity ultrasound on the solidification microstructure of 2219 Al alloy by setting an ultrasonic application angle of 15° and with the different depths (30 mm, 70 mm, and 110 mm). The experimental results show that low-intensity ultrasound can also achieve a significant refining effect on the microstructure. Comparative analysis of solidified microstructures across multiple samples revealed, for the first time, that low-intensity ultrasound refines grain morphology primarily through enhanced heterogeneous nucleation. By establishing a theoretical model between acoustic intensity () and heterogeneous nucleation energy (), the required low-intensity acoustic pressure amplitude () for heterogeneous nucleation was determined. The calculation results are in good agreement with the experimental conclusions, thereby proposing a new mechanism for ultrasound to improve solidification microstructures. This work demonstrates that the ultrasonic cavitation and acoustic streaming are not necessary conditions for refining grain structures. Low-intensity ultrasound can also promote the refinement of Al alloy grain structures when satisfying the critical nucleation acoustic pressure conditions.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.