Degradation of lithium metal batteries due to dead lithium accumulation under ultrasound

IF 8.7 1区 化学 Q1 ACOUSTICS
Byeonggi Kim, Jinwook Jung, Seunghun Baek, Byeongyong Lee
{"title":"Degradation of lithium metal batteries due to dead lithium accumulation under ultrasound","authors":"Byeonggi Kim,&nbsp;Jinwook Jung,&nbsp;Seunghun Baek,&nbsp;Byeongyong Lee","doi":"10.1016/j.ultsonch.2025.107334","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium metal batteries (LMBs) have emerged as promising alternatives to conventional lithium-ion batteries (LIBs) due to their superior capacity and energy density. However, practical applications are hindered by challenges such as dendritic lithium growth and the accumulation of dead lithium, which severely impact performance and safety. To address these issues, ultrasound has been proposed as a physical method to mitigate dendrite formation. In this study, we investigate the effects of real-time ultrasound application on LMBs and their subsequent electrochemical performance. Interestingly, our findings reveal that contrary to the intended effect, ultrasound accelerates the accumulation of dead lithium, worsening with continued cycling. Mechanical simulations indicate that the stress induced by ultrasound causes fragmentation and further dead lithium accumulation. This accumulation not only hinders reaction kinetics but also disrupts plating/stripping processes, leading to significant capacity retention issues. Consequently, ultrasound-treated cells exhibit higher over potential, lower coulombic efficiency, and faster capacity fade compared to untreated cells across half-cells, symmetric cells, and full cells. These results underscore that ultrasound negatively impacts the lifespan of LMBs, highlighting its critical adverse effects on the porous, dendritic structure of LMBs. Therefore, this provides a novel insight that these dynamics are crucial for optimizing the application of ultrasound in future LMBs technologies.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"117 ","pages":"Article 107334"},"PeriodicalIF":8.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725001130","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium metal batteries (LMBs) have emerged as promising alternatives to conventional lithium-ion batteries (LIBs) due to their superior capacity and energy density. However, practical applications are hindered by challenges such as dendritic lithium growth and the accumulation of dead lithium, which severely impact performance and safety. To address these issues, ultrasound has been proposed as a physical method to mitigate dendrite formation. In this study, we investigate the effects of real-time ultrasound application on LMBs and their subsequent electrochemical performance. Interestingly, our findings reveal that contrary to the intended effect, ultrasound accelerates the accumulation of dead lithium, worsening with continued cycling. Mechanical simulations indicate that the stress induced by ultrasound causes fragmentation and further dead lithium accumulation. This accumulation not only hinders reaction kinetics but also disrupts plating/stripping processes, leading to significant capacity retention issues. Consequently, ultrasound-treated cells exhibit higher over potential, lower coulombic efficiency, and faster capacity fade compared to untreated cells across half-cells, symmetric cells, and full cells. These results underscore that ultrasound negatively impacts the lifespan of LMBs, highlighting its critical adverse effects on the porous, dendritic structure of LMBs. Therefore, this provides a novel insight that these dynamics are crucial for optimizing the application of ultrasound in future LMBs technologies.
锂金属电池在超声作用下因死锂堆积而退化
锂金属电池(lmb)由于其优越的容量和能量密度,已成为传统锂离子电池(lib)的有希望的替代品。然而,枝晶锂的生长和死锂的积累等挑战阻碍了实际应用,严重影响了性能和安全性。为了解决这些问题,超声被提出作为一种物理方法来减轻枝晶的形成。在这项研究中,我们研究了实时超声应用对lmb及其随后的电化学性能的影响。有趣的是,我们的研究结果显示,与预期的效果相反,超声波加速了死锂的积累,并随着持续循环而恶化。力学模拟结果表明,超声诱发的应力导致了锂的破碎和进一步的死锂积累。这种积累不仅阻碍了反应动力学,而且破坏了电镀/剥离过程,导致严重的容量保留问题。因此,与未处理的半细胞、对称细胞和全细胞相比,超声处理的细胞表现出更高的超电位、更低的库仑效率和更快的容量衰减。这些结果强调了超声对lmb寿命的负面影响,强调了其对lmb多孔树突结构的关键不利影响。因此,这提供了一个新的见解,这些动力学对于优化超声在未来lmb技术中的应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信