Homogenization of stable-like operators with random, ergodic coefficients

IF 2.4 2区 数学 Q1 MATHEMATICS
Tomasz Klimsiak , Tomasz Komorowski , Lorenzo Marino
{"title":"Homogenization of stable-like operators with random, ergodic coefficients","authors":"Tomasz Klimsiak ,&nbsp;Tomasz Komorowski ,&nbsp;Lorenzo Marino","doi":"10.1016/j.jde.2025.02.054","DOIUrl":null,"url":null,"abstract":"<div><div>We show homogenization for a family of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-valued stable-like processes <span><math><msub><mrow><mo>(</mo><msubsup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>ε</mi><mo>;</mo><mi>θ</mi></mrow></msubsup><mo>)</mo></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>, <span><math><mi>ε</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, whose (random) Fourier symbols equal <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>;</mo><mi>θ</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>ε</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mi>q</mi><mo>(</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>,</mo><mi>ε</mi><mi>ξ</mi><mo>;</mo><mi>θ</mi><mo>)</mo></math></span>, where<span><span><span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>;</mo><mi>θ</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></munder><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>z</mi><mo>⋅</mo><mi>ξ</mi></mrow></msup><mo>+</mo><mi>i</mi><mi>z</mi><mo>⋅</mo><mi>ξ</mi><msub><mrow><mn>1</mn></mrow><mrow><mo>{</mo><mo>|</mo><mi>z</mi><mo>|</mo><mo>≤</mo><mn>1</mn><mo>}</mo></mrow></msub><mo>)</mo></mrow><mspace></mspace><mfrac><mrow><mi>a</mi><mo>(</mo><mi>x</mi><mo>;</mo><mi>θ</mi><mo>)</mo><mi>z</mi><mo>⋅</mo><mi>z</mi></mrow><mrow><mo>|</mo><mi>z</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>d</mi><mo>+</mo><mn>2</mn><mo>+</mo><mi>α</mi></mrow></msup></mrow></mfrac><mspace></mspace><mi>d</mi><mi>z</mi><mo>,</mo></math></span></span></span> for <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>θ</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mi>d</mi></mrow></msup><mo>×</mo><mi>Θ</mi></math></span>. Here <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and the family <span><math><msub><mrow><mo>(</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>;</mo><mi>θ</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub></math></span> of <span><math><mi>d</mi><mo>×</mo><mi>d</mi></math></span> symmetric, non-negative definite matrices is a stationary ergodic random field over some probability space <figure><img></figure>. We assume that the random field is deterministically bounded and non-degenerate, i.e. <span><math><mo>|</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>;</mo><mi>θ</mi><mo>)</mo><mo>|</mo><mo>≤</mo><mi>Λ</mi></math></span> and <span><math><mtext>Tr</mtext><mo>(</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>;</mo><mi>θ</mi><mo>)</mo><mo>)</mo><mo>≥</mo><mi>λ</mi></math></span> for some <span><math><mi>Λ</mi><mo>,</mo><mi>λ</mi><mo>&gt;</mo><mn>0</mn></math></span> and all <span><math><mi>θ</mi><mo>∈</mo><mi>Θ</mi></math></span>. In addition, we suppose that the field is regular enough so that for any <span><math><mi>θ</mi><mo>∈</mo><mi>Θ</mi></math></span>, the operator <span><math><mo>−</mo><mi>q</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>D</mi><mo>;</mo><mi>θ</mi><mo>)</mo></math></span>, defined on the space of compactly supported <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, is closable in the space of continuous functions vanishing at infinity and its closure generates a Feller semigroup. We prove the weak convergence of the laws of <span><math><msub><mrow><mo>(</mo><msubsup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>ε</mi><mo>;</mo><mi>θ</mi></mrow></msubsup><mo>)</mo></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>, as <span><math><mi>ε</mi><mo>↓</mo><mn>0</mn></math></span>, in the Skorokhod space, <em>m</em>-a.s. in <em>θ</em>, to an <em>α</em>-stable process whose Fourier symbol <span><math><mover><mrow><mi>q</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>(</mo><mi>ξ</mi><mo>)</mo></math></span> is given by <span><math><mover><mrow><mi>q</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Θ</mi></mrow></msub><mi>q</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>ξ</mi><mo>;</mo><mi>θ</mi><mo>)</mo><msub><mrow><mi>Φ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mi>θ</mi><mo>)</mo><mspace></mspace><mi>m</mi><mo>(</mo><mi>d</mi><mi>θ</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span> is a strictly positive density w.r.t. measure <em>m</em>. Our result has an analytic interpretation in terms of the convergence, as <span><math><mi>ε</mi><mo>↓</mo><mn>0</mn></math></span>, of the solutions to random integro-differential equations <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>;</mo><mi>θ</mi><mo>)</mo><mo>=</mo><mo>−</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mo>;</mo><mi>θ</mi><mo>)</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>;</mo><mi>θ</mi><mo>)</mo></math></span>, with the initial condition <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>;</mo><mi>θ</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, where <em>f</em> is a bounded and continuous function on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"430 ","pages":"Article 113183"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001731","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show homogenization for a family of Rd-valued stable-like processes (Xtε;θ)t0, ε(0,1], whose (random) Fourier symbols equal qε(x,ξ;θ)=1εαq(xε,εξ;θ), whereq(x,ξ;θ)=Rd(1eizξ+izξ1{|z|1})a(x;θ)zz|z|d+2+αdz, for (x,ξ,θ)R2d×Θ. Here α(0,2) and the family (a(x;θ))xRd of d×d symmetric, non-negative definite matrices is a stationary ergodic random field over some probability space
. We assume that the random field is deterministically bounded and non-degenerate, i.e. |a(x;θ)|Λ and Tr(a(x;θ))λ for some Λ,λ>0 and all θΘ. In addition, we suppose that the field is regular enough so that for any θΘ, the operator q(,D;θ), defined on the space of compactly supported C2 functions on Rd, is closable in the space of continuous functions vanishing at infinity and its closure generates a Feller semigroup. We prove the weak convergence of the laws of (Xtε;θ)t0, as ε0, in the Skorokhod space, m-a.s. in θ, to an α-stable process whose Fourier symbol q¯(ξ) is given by q¯(ξ)=Θq(0,ξ;θ)Φ(θ)m(dθ), where Φ is a strictly positive density w.r.t. measure m. Our result has an analytic interpretation in terms of the convergence, as ε0, of the solutions to random integro-differential equations tuε(t,x;θ)=qε(x,D;θ)uε(t,x;θ), with the initial condition uε(0,x;θ)=f(x), where f is a bounded and continuous function on Rd.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信