Tomasz Klimsiak , Tomasz Komorowski , Lorenzo Marino
{"title":"Homogenization of stable-like operators with random, ergodic coefficients","authors":"Tomasz Klimsiak , Tomasz Komorowski , Lorenzo Marino","doi":"10.1016/j.jde.2025.02.054","DOIUrl":null,"url":null,"abstract":"<div><div>We show homogenization for a family of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-valued stable-like processes <span><math><msub><mrow><mo>(</mo><msubsup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>ε</mi><mo>;</mo><mi>θ</mi></mrow></msubsup><mo>)</mo></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>, <span><math><mi>ε</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, whose (random) Fourier symbols equal <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>;</mo><mi>θ</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>ε</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></mfrac><mi>q</mi><mo>(</mo><mfrac><mrow><mi>x</mi></mrow><mrow><mi>ε</mi></mrow></mfrac><mo>,</mo><mi>ε</mi><mi>ξ</mi><mo>;</mo><mi>θ</mi><mo>)</mo></math></span>, where<span><span><span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>;</mo><mi>θ</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></munder><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>z</mi><mo>⋅</mo><mi>ξ</mi></mrow></msup><mo>+</mo><mi>i</mi><mi>z</mi><mo>⋅</mo><mi>ξ</mi><msub><mrow><mn>1</mn></mrow><mrow><mo>{</mo><mo>|</mo><mi>z</mi><mo>|</mo><mo>≤</mo><mn>1</mn><mo>}</mo></mrow></msub><mo>)</mo></mrow><mspace></mspace><mfrac><mrow><mi>a</mi><mo>(</mo><mi>x</mi><mo>;</mo><mi>θ</mi><mo>)</mo><mi>z</mi><mo>⋅</mo><mi>z</mi></mrow><mrow><mo>|</mo><mi>z</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>d</mi><mo>+</mo><mn>2</mn><mo>+</mo><mi>α</mi></mrow></msup></mrow></mfrac><mspace></mspace><mi>d</mi><mi>z</mi><mo>,</mo></math></span></span></span> for <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>,</mo><mi>θ</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mi>d</mi></mrow></msup><mo>×</mo><mi>Θ</mi></math></span>. Here <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and the family <span><math><msub><mrow><mo>(</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>;</mo><mi>θ</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></msub></math></span> of <span><math><mi>d</mi><mo>×</mo><mi>d</mi></math></span> symmetric, non-negative definite matrices is a stationary ergodic random field over some probability space <figure><img></figure>. We assume that the random field is deterministically bounded and non-degenerate, i.e. <span><math><mo>|</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>;</mo><mi>θ</mi><mo>)</mo><mo>|</mo><mo>≤</mo><mi>Λ</mi></math></span> and <span><math><mtext>Tr</mtext><mo>(</mo><mi>a</mi><mo>(</mo><mi>x</mi><mo>;</mo><mi>θ</mi><mo>)</mo><mo>)</mo><mo>≥</mo><mi>λ</mi></math></span> for some <span><math><mi>Λ</mi><mo>,</mo><mi>λ</mi><mo>></mo><mn>0</mn></math></span> and all <span><math><mi>θ</mi><mo>∈</mo><mi>Θ</mi></math></span>. In addition, we suppose that the field is regular enough so that for any <span><math><mi>θ</mi><mo>∈</mo><mi>Θ</mi></math></span>, the operator <span><math><mo>−</mo><mi>q</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>D</mi><mo>;</mo><mi>θ</mi><mo>)</mo></math></span>, defined on the space of compactly supported <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> functions on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, is closable in the space of continuous functions vanishing at infinity and its closure generates a Feller semigroup. We prove the weak convergence of the laws of <span><math><msub><mrow><mo>(</mo><msubsup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>ε</mi><mo>;</mo><mi>θ</mi></mrow></msubsup><mo>)</mo></mrow><mrow><mi>t</mi><mo>≥</mo><mn>0</mn></mrow></msub></math></span>, as <span><math><mi>ε</mi><mo>↓</mo><mn>0</mn></math></span>, in the Skorokhod space, <em>m</em>-a.s. in <em>θ</em>, to an <em>α</em>-stable process whose Fourier symbol <span><math><mover><mrow><mi>q</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>(</mo><mi>ξ</mi><mo>)</mo></math></span> is given by <span><math><mover><mrow><mi>q</mi></mrow><mrow><mo>¯</mo></mrow></mover><mo>(</mo><mi>ξ</mi><mo>)</mo><mo>=</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>Θ</mi></mrow></msub><mi>q</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>ξ</mi><mo>;</mo><mi>θ</mi><mo>)</mo><msub><mrow><mi>Φ</mi></mrow><mrow><mo>⁎</mo></mrow></msub><mo>(</mo><mi>θ</mi><mo>)</mo><mspace></mspace><mi>m</mi><mo>(</mo><mi>d</mi><mi>θ</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>Φ</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span> is a strictly positive density w.r.t. measure <em>m</em>. Our result has an analytic interpretation in terms of the convergence, as <span><math><mi>ε</mi><mo>↓</mo><mn>0</mn></math></span>, of the solutions to random integro-differential equations <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>;</mo><mi>θ</mi><mo>)</mo><mo>=</mo><mo>−</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>,</mo><mi>D</mi><mo>;</mo><mi>θ</mi><mo>)</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>;</mo><mi>θ</mi><mo>)</mo></math></span>, with the initial condition <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>ε</mi></mrow></msub><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>;</mo><mi>θ</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, where <em>f</em> is a bounded and continuous function on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"430 ","pages":"Article 113183"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001731","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show homogenization for a family of -valued stable-like processes , , whose (random) Fourier symbols equal , where for . Here and the family of symmetric, non-negative definite matrices is a stationary ergodic random field over some probability space . We assume that the random field is deterministically bounded and non-degenerate, i.e. and for some and all . In addition, we suppose that the field is regular enough so that for any , the operator , defined on the space of compactly supported functions on , is closable in the space of continuous functions vanishing at infinity and its closure generates a Feller semigroup. We prove the weak convergence of the laws of , as , in the Skorokhod space, m-a.s. in θ, to an α-stable process whose Fourier symbol is given by , where is a strictly positive density w.r.t. measure m. Our result has an analytic interpretation in terms of the convergence, as , of the solutions to random integro-differential equations , with the initial condition , where f is a bounded and continuous function on .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics