Eljo Y. van Battum, Marleen H. van den Munkhof, R. Jeroen Pasterkamp
{"title":"Novel insights into the regulation of neuron migration by axon guidance proteins","authors":"Eljo Y. van Battum, Marleen H. van den Munkhof, R. Jeroen Pasterkamp","doi":"10.1016/j.conb.2025.103012","DOIUrl":null,"url":null,"abstract":"<div><div>Neural circuit development requires precisely coordinated guidance of migrating neurons to their targets within the nervous system. A diverse array of molecular cues has been implicated in neuron migration, including signals originally identified for their ability to dictate the trajectories of growing axons, i.e. axon guidance proteins. These proteins are now known to have pleiotropic effects affecting different stages of neuron migration, from promoting cell mobility to acting as stop signals. In this review, we discuss recent advances in our understanding of how canonical axon guidance proteins influence migrating neurons with a particular focus on recent insights into how neuron migration is controlled in the GnRH system and cortex, and the multifunctional role of Netrin-1. At the molecular level, tight control of receptor expression and crosstalk, and interactions with the extracellular matrix have recently been implicated in neuron migration control.</div></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"92 ","pages":"Article 103012"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438825000431","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neural circuit development requires precisely coordinated guidance of migrating neurons to their targets within the nervous system. A diverse array of molecular cues has been implicated in neuron migration, including signals originally identified for their ability to dictate the trajectories of growing axons, i.e. axon guidance proteins. These proteins are now known to have pleiotropic effects affecting different stages of neuron migration, from promoting cell mobility to acting as stop signals. In this review, we discuss recent advances in our understanding of how canonical axon guidance proteins influence migrating neurons with a particular focus on recent insights into how neuron migration is controlled in the GnRH system and cortex, and the multifunctional role of Netrin-1. At the molecular level, tight control of receptor expression and crosstalk, and interactions with the extracellular matrix have recently been implicated in neuron migration control.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience