Leveraging public cloud infrastructure for real-time connected vehicle speed advisory at a signalized corridor

IF 4.3 Q2 TRANSPORTATION
Hsien-Wen Deng , M Sabbir Salek , Mizanur Rahman , Mashrur Chowdhury , Mitch Shue , Amy W. Apon
{"title":"Leveraging public cloud infrastructure for real-time connected vehicle speed advisory at a signalized corridor","authors":"Hsien-Wen Deng ,&nbsp;M Sabbir Salek ,&nbsp;Mizanur Rahman ,&nbsp;Mashrur Chowdhury ,&nbsp;Mitch Shue ,&nbsp;Amy W. Apon","doi":"10.1016/j.ijtst.2024.03.004","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we developed a real-time connected vehicle (CV) speed advisory application that uses public cloud services, and tested it on a simulated signalized corridor for different roadway traffic conditions. First, we developed a scalable serverless cloud computing architecture leveraging public cloud services offered by Amazon Web Services (AWS) to support the requirements of a real-time CV application. Second, we developed an optimization-based real-time CV speed advisory algorithm by taking a modular design approach, which makes the application automatically scalable and deployable in the cloud using the serverless architecture. Third, we developed a cloud-in-the-loop simulation testbed using AWS and an open-source microscopic roadway traffic simulator called simulation of urban mobility (SUMO). Our analyses based on different roadway traffic conditions showed that the serverless CV speed advisory application meets the latency requirement of real-time CV mobility applications. Besides, our serverless CV speed advisory application reduced the average stopped delay (by 77%) and the aggregated risk of collision (by 21%) at the signalized intersections of a corridor. These prove the feasibility as well as the efficacy of utilizing public cloud infrastructure to implement real-time roadway traffic management applications in a CV environment.</div></div>","PeriodicalId":52282,"journal":{"name":"International Journal of Transportation Science and Technology","volume":"17 ","pages":"Pages 131-147"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transportation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2046043024000352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we developed a real-time connected vehicle (CV) speed advisory application that uses public cloud services, and tested it on a simulated signalized corridor for different roadway traffic conditions. First, we developed a scalable serverless cloud computing architecture leveraging public cloud services offered by Amazon Web Services (AWS) to support the requirements of a real-time CV application. Second, we developed an optimization-based real-time CV speed advisory algorithm by taking a modular design approach, which makes the application automatically scalable and deployable in the cloud using the serverless architecture. Third, we developed a cloud-in-the-loop simulation testbed using AWS and an open-source microscopic roadway traffic simulator called simulation of urban mobility (SUMO). Our analyses based on different roadway traffic conditions showed that the serverless CV speed advisory application meets the latency requirement of real-time CV mobility applications. Besides, our serverless CV speed advisory application reduced the average stopped delay (by 77%) and the aggregated risk of collision (by 21%) at the signalized intersections of a corridor. These prove the feasibility as well as the efficacy of utilizing public cloud infrastructure to implement real-time roadway traffic management applications in a CV environment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Transportation Science and Technology
International Journal of Transportation Science and Technology Engineering-Civil and Structural Engineering
CiteScore
7.20
自引率
0.00%
发文量
105
审稿时长
88 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信