Reem Al Mawla , Cécile Cœur , Nicolas Houzel , Sylvain Billet , Fatima Al Ali , Vincent Gaudion , Paul Genevray , Fabrice Cazier , Manolis N. Romanias
{"title":"Ozonolysis of prenol, a second-generation biofuel, in atmospheric simulation chambers: Temperature dependent kinetics and gas-phase products analysis","authors":"Reem Al Mawla , Cécile Cœur , Nicolas Houzel , Sylvain Billet , Fatima Al Ali , Vincent Gaudion , Paul Genevray , Fabrice Cazier , Manolis N. Romanias","doi":"10.1016/j.atmosenv.2025.121188","DOIUrl":null,"url":null,"abstract":"<div><div>Prenol (3-methyl-2-buten-1-ol), a second-generation biofuel, is released in the atmosphere during its use and storage where it can react with atmospheric oxidants. In this study, the ozonolysis reaction of prenol was investigated in two atmospheric simulation chambers CHARME (CHamber for the Atmospheric Reactivity and Metrology of the Environment) and THALAMOS (Thermally Regulated Atmospheric Simulation Chamber). PTR-ToF-MS and SIFT-MS were used to monitor the concentrations of organic compounds versus time. The room temperature (293 ± 2 K) rate coefficient was determined using the relative and pseudo-first order methods. The values obtained using both methods in the two chambers were in accordance, leading to an average rate coefficient of (3.26 ± 0.33) × 10<sup>−16</sup> cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup>. The temperature-dependent rate coefficient of this reaction was also investigated using the relative method in the temperature range 283–353 K. The following Arrhenius expression: <span><math><mrow><mi>k</mi><mo>=</mo><mrow><mo>(</mo><mrow><mn>9.83</mn><mo>±</mo><mn>1.7</mn></mrow><mo>)</mo></mrow><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>16</mn></mrow></msup><mo>×</mo><mi>exp</mi><mrow><mo>(</mo><mrow><mfrac><mrow><mo>−</mo><mn>331</mn><mspace></mspace><mo>±</mo><mn>53</mn></mrow><mi>T</mi></mfrac><mspace></mspace></mrow><mo>)</mo></mrow></mrow></math></span> cm<sup>3</sup> molecule<sup>−1</sup> s<sup>−1</sup> was obtained. The gas-phase oxidation products formed, at room temperature (293 ± 2 K), from this reaction were investigated using PTR-ToF-MS, SIFT-MS and GC-EI-MS analyses. Several products were identified and quantified (in %), including acetone (9 ± 2), whose formation yield was determined using a calibration standard, and acetaldehyde (30 ± 5), glycolaldehyde (30 ± 5), formaldehyde (8 ± 1), methylglyoxal (8 ± 1) and hydroxyacetone and/or methylacetate (5 ± 1) %, whose formation yields were estimated using a generic H<sub>3</sub>O<sup>+</sup> rate coefficient for their protonation reaction. Glyoxal was also observed but not quantified. The kinetic data are compared with literature and a reaction mechanism is proposed. To our knowledge, this work is the first one presenting the mechanistic study and Arrhenius equation for the ozonolysis reaction of prenol.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"352 ","pages":"Article 121188"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231025001633","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Prenol (3-methyl-2-buten-1-ol), a second-generation biofuel, is released in the atmosphere during its use and storage where it can react with atmospheric oxidants. In this study, the ozonolysis reaction of prenol was investigated in two atmospheric simulation chambers CHARME (CHamber for the Atmospheric Reactivity and Metrology of the Environment) and THALAMOS (Thermally Regulated Atmospheric Simulation Chamber). PTR-ToF-MS and SIFT-MS were used to monitor the concentrations of organic compounds versus time. The room temperature (293 ± 2 K) rate coefficient was determined using the relative and pseudo-first order methods. The values obtained using both methods in the two chambers were in accordance, leading to an average rate coefficient of (3.26 ± 0.33) × 10−16 cm3 molecule−1 s−1. The temperature-dependent rate coefficient of this reaction was also investigated using the relative method in the temperature range 283–353 K. The following Arrhenius expression: cm3 molecule−1 s−1 was obtained. The gas-phase oxidation products formed, at room temperature (293 ± 2 K), from this reaction were investigated using PTR-ToF-MS, SIFT-MS and GC-EI-MS analyses. Several products were identified and quantified (in %), including acetone (9 ± 2), whose formation yield was determined using a calibration standard, and acetaldehyde (30 ± 5), glycolaldehyde (30 ± 5), formaldehyde (8 ± 1), methylglyoxal (8 ± 1) and hydroxyacetone and/or methylacetate (5 ± 1) %, whose formation yields were estimated using a generic H3O+ rate coefficient for their protonation reaction. Glyoxal was also observed but not quantified. The kinetic data are compared with literature and a reaction mechanism is proposed. To our knowledge, this work is the first one presenting the mechanistic study and Arrhenius equation for the ozonolysis reaction of prenol.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.