Degenerate Kirchhoff problems with nonlinear Neumann boundary condition

IF 1.7 2区 数学 Q1 MATHEMATICS
Franziska Borer , Marcos T.O. Pimenta , Patrick Winkert
{"title":"Degenerate Kirchhoff problems with nonlinear Neumann boundary condition","authors":"Franziska Borer ,&nbsp;Marcos T.O. Pimenta ,&nbsp;Patrick Winkert","doi":"10.1016/j.jfa.2025.110933","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we consider degenerate Kirchhoff-type equations of the form<span><span><span><math><mo>−</mo><mi>ϕ</mi><mo>(</mo><mi>Ξ</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>)</mo><mrow><mo>(</mo><mi>A</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>−</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mspace></mspace><mspace></mspace><mtext>in </mtext><mi>Ω</mi><mo>,</mo><mi>ϕ</mi><mo>(</mo><mi>Ξ</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>)</mo><mi>B</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>⋅</mo><mi>ν</mi><mo>=</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo><mspace></mspace><mtext>on </mtext><mo>∂</mo><mi>Ω</mi><mo>,</mo></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊆</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, <span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>, is a bounded domain with Lipschitz boundary ∂Ω, <span><math><mi>A</mi></math></span> denotes the double phase operator given by<span><span><span><math><mrow><mi>A</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mi>div</mi><mspace></mspace><mrow><mo>(</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>)</mo></mrow></mrow></math></span></span></span> for <span><math><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>H</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, <span><math><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> is the outer unit normal of Ω at <span><math><mi>x</mi><mo>∈</mo><mo>∂</mo><mi>Ω</mi></math></span>,<span><span><span><math><mi>B</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>u</mi><mo>,</mo><mi>Ξ</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mrow><mo>(</mo><mfrac><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup></mrow><mrow><mi>p</mi></mrow></mfrac><mo>+</mo><mi>μ</mi><mo>(</mo><mi>x</mi><mo>)</mo><mfrac><mrow><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi></mrow></msup></mrow><mrow><mi>q</mi></mrow></mfrac><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>x</mi><mo>,</mo></math></span></span></span> <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mi>N</mi></math></span>, <span><math><mi>p</mi><mo>&lt;</mo><mi>q</mi><mo>&lt;</mo><msup><mrow><mi>p</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mi>N</mi><mi>p</mi></mrow><mrow><mi>N</mi><mo>−</mo><mi>p</mi></mrow></mfrac></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>μ</mi><mo>(</mo><mo>⋅</mo><mo>)</mo><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, <span><math><mi>ϕ</mi><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><mi>a</mi><mo>+</mo><mi>b</mi><msup><mrow><mi>s</mi></mrow><mrow><mi>ζ</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> for <span><math><mi>s</mi><mo>∈</mo><mi>R</mi></math></span> with <span><math><mi>a</mi><mo>≥</mo><mn>0</mn></math></span>, <span><math><mi>b</mi><mo>&gt;</mo><mn>0</mn></math></span> and <span><math><mi>ζ</mi><mo>≥</mo><mn>1</mn></math></span>, and <span><math><mi>f</mi><mo>:</mo><mi>Ω</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span>, <span><math><mi>g</mi><mo>:</mo><mo>∂</mo><mi>Ω</mi><mo>×</mo><mi>R</mi><mo>→</mo><mi>R</mi></math></span> are Carathéodory functions that grow superlinearly and subcritically. We prove the existence of a nodal ground state solution to the problem above, based on variational methods and minimization of the associated energy functional <span><math><mi>E</mi><mo>:</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>H</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>→</mo><mi>R</mi></math></span> over the constraint set<span><span><span><math><mrow><mtable><mtr><mtd></mtd><mtd><mi>C</mi><mo>=</mo><mo>{</mo><mi>u</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>H</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>:</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>±</mo></mrow></msup><mo>≠</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd></mtd><mtd><mspace></mspace><mspace></mspace><mrow><mo>〈</mo><msup><mrow><mi>E</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>〉</mo></mrow><mo>=</mo><mrow><mo>〈</mo><msup><mrow><mi>E</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>u</mi><mo>)</mo><mo>,</mo><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>〉</mo></mrow><mo>=</mo><mn>0</mn><mo>}</mo><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> whereby <span><math><mi>C</mi></math></span> differs from the well-known nodal Nehari manifold due to the nonlocal character of the problem.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 4","pages":"Article 110933"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001156","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider degenerate Kirchhoff-type equations of the formϕ(Ξ(u))(A(u)|u|p2u)=f(x,u)in Ω,ϕ(Ξ(u))B(u)ν=g(x,u)on Ω, where ΩRN, N2, is a bounded domain with Lipschitz boundary ∂Ω, A denotes the double phase operator given byA(u)=div(|u|p2u+μ(x)|u|q2u) for uW1,H(Ω), ν(x) is the outer unit normal of Ω at xΩ,B(u)=|u|p2u+μ(x)|u|q2u,Ξ(u)=Ω(|u|p+|u|pp+μ(x)|u|qq)dx, 1<p<N, p<q<p=NpNp, 0μ()L(Ω), ϕ(s)=a+bsζ1 for sR with a0, b>0 and ζ1, and f:Ω×RR, g:Ω×RR are Carathéodory functions that grow superlinearly and subcritically. We prove the existence of a nodal ground state solution to the problem above, based on variational methods and minimization of the associated energy functional E:W1,H(Ω)R over the constraint setC={uW1,H(Ω):u±0,E(u),u+=E(u),u=0}, whereby C differs from the well-known nodal Nehari manifold due to the nonlocal character of the problem.
具有非线性Neumann边界条件的退化Kirchhoff问题
在本文中,我们考虑退化Kirchhoff-type方程的形式−ϕ(Ξ(u)) ((u)−| | u p−2 u) = f (x, u)在Ω,ϕ(Ξ(u) B (u)⋅ν= g(∂x, u)Ω,哪里Ω⊆RN, N≥2,与李普希茨有限域边界∂Ω,表示双阶段运营商给面试官(u) = div(| |∇u p−2∇u +μ(x) |∇u | q−2∇u) u∈W1, H(Ω),ν(x)是Ω的外单位法在x∈∂Ω,B (u) = | |∇u p−2∇u +μ(x) |∇u | q−2∇u,Ξ(u) =∫Ω(|∇u p + | | |页+μ(x) |∇u | qq) dx, 1 & lt;术中,N,术中;q< p⁎= NpN型−p 0≤μ(⋅)∈L∞(Ω),ϕ(s) = A + Bζ−1 s∈R≥0,b> 0和ζ≥1,和f:Ω×R→R, g:∂Ω×R→R是超线性和亚临界增长的carathacimodory函数。在约束setC={u∈W1,H(Ω):u±≠0,< E ' (u),u+ > = < E ' (u),−u - > =0}上,我们基于变分方法和相关能量泛函E:W1,H(Ω)→R的最小化证明了上述问题的节点基态解的存在性,其中C与众所周知的节点Nehari流形由于问题的非局部特征而不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信