Mechanisms of grain refinement and improved kinetic property of nanocrystalline Mg-Ni-La hydrogen storage alloys prepared by nanocrystallization of amorphous
IF 15.8 1区 材料科学Q1 METALLURGY & METALLURGICAL ENGINEERING
Y.M. Li , Z.C. Liu , X. Dong , Y.P. Ji , C.J. Shi , G.F. Zhang , Y.Z. Li , J. Kennedy , F. Yang
{"title":"Mechanisms of grain refinement and improved kinetic property of nanocrystalline Mg-Ni-La hydrogen storage alloys prepared by nanocrystallization of amorphous","authors":"Y.M. Li , Z.C. Liu , X. Dong , Y.P. Ji , C.J. Shi , G.F. Zhang , Y.Z. Li , J. Kennedy , F. Yang","doi":"10.1016/j.jma.2024.07.022","DOIUrl":null,"url":null,"abstract":"<div><div>Mg<sub>x</sub>(Ni<sub>0.8</sub>La<sub>0.2</sub>)<sub>100-x</sub>, where x = 60, 70, 80, exhibiting a nanocrystalline microstructure, were prepared through the crystallization of amorphous alloys. The investigation encompassed the phase constitution, grain size, microstructural stability, and hydrogen storage properties. Crystallization kinetics, along with in-situ high-energy XRD characterization, revealed a concentrated and synchronous crystallization of Mg<sub>2</sub>Ni and RE-Mg-Ni ternary phases with the increase in La and Ni content. The attributed synchronous crystallization process was found to be a result of the close local affinity of Mg<sub>2</sub>Ni and RE-Mg-Ni ternary phases, as assessed by the thermodynamic Miedema model. Significant secondary phase pinning effect, arising from the high likelihood of well-matching phase structures between Mg<sub>2</sub>Ni, LaMg<sub>2</sub>Ni, and LaMgNi<sub>4</sub>, was validated through both the edge-to-edge matching model prediction and experimental observation. The fine and homogeneous microstructure was shown to be a consequence of fast crystallization kinetics and the secondary phase pinning effect. Improved activation performance and cycling stability were observed, stemming from grain refinement and excellent microstructural stability. Our study provides insights into mechanism of grain refinement of nanocrystalline microstructure tailored by phase constitution and crystallization kinetics in the amorphous-crystallization route. We also demonstrate the potential of material design guided by phase equilibria and crystallographic predictions to improve nanocrystalline with excellent microstructural stability.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"13 3","pages":"Pages 1364-1381"},"PeriodicalIF":15.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956724002664","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Mgx(Ni0.8La0.2)100-x, where x = 60, 70, 80, exhibiting a nanocrystalline microstructure, were prepared through the crystallization of amorphous alloys. The investigation encompassed the phase constitution, grain size, microstructural stability, and hydrogen storage properties. Crystallization kinetics, along with in-situ high-energy XRD characterization, revealed a concentrated and synchronous crystallization of Mg2Ni and RE-Mg-Ni ternary phases with the increase in La and Ni content. The attributed synchronous crystallization process was found to be a result of the close local affinity of Mg2Ni and RE-Mg-Ni ternary phases, as assessed by the thermodynamic Miedema model. Significant secondary phase pinning effect, arising from the high likelihood of well-matching phase structures between Mg2Ni, LaMg2Ni, and LaMgNi4, was validated through both the edge-to-edge matching model prediction and experimental observation. The fine and homogeneous microstructure was shown to be a consequence of fast crystallization kinetics and the secondary phase pinning effect. Improved activation performance and cycling stability were observed, stemming from grain refinement and excellent microstructural stability. Our study provides insights into mechanism of grain refinement of nanocrystalline microstructure tailored by phase constitution and crystallization kinetics in the amorphous-crystallization route. We also demonstrate the potential of material design guided by phase equilibria and crystallographic predictions to improve nanocrystalline with excellent microstructural stability.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.