{"title":"Seasonal and topographical dynamics of precipitable water vapor in Nepal: A GNSS-based assessment","authors":"Srijan Thapa , Riya Pokhrel , Bigyan Banjara , Bhijan Nyaupane , Aadarsha Dhakal","doi":"10.1016/j.dynatmoce.2025.101548","DOIUrl":null,"url":null,"abstract":"<div><div>Precipitable water vapor (PWV), a key indicator of atmospheric moisture, plays a vital role in weather forecasting, climate studies, and understanding atmospheric thermodynamics. This study utilizes ground-based GNSS technology to estimate PWV and Zenith Tropospheric Delay (ZTD) across three distinct topographical regions of Nepal: Terai, Hilly, and Himalayan, over four seasons: winter, spring, summer, and autumn. The analysis reveals that the Terai region, characterized by lower elevations, consistently exhibits higher PWV and ZTD values compared to the high-altitude Himalayan region, with the Hilly region showing intermediate levels. Seasonal variations indicate the highest PWV and ZTD during the summer and the lowest during winter, reflecting the influence of monsoonal moisture. Diurnal variability analysis further shows significant fluctuations in PWV, with a minimum in the early morning (21:45–00:45 UTC) and at night (17:15–18:15 UTC) and a maximum during the warmest part of the day (6:15–9:15 UTC). These findings underscore the effectiveness of GNSS technology in monitoring atmospheric water vapor and highlight the significant impact of topography and seasonal cycles on PWV distribution in Nepal. Such research and insights are crucial for improving weather forecasting, advancing climate change research, and enhancing atmospheric monitoring in regions with diverse topographical features.</div></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"110 ","pages":"Article 101548"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377026525000235","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Precipitable water vapor (PWV), a key indicator of atmospheric moisture, plays a vital role in weather forecasting, climate studies, and understanding atmospheric thermodynamics. This study utilizes ground-based GNSS technology to estimate PWV and Zenith Tropospheric Delay (ZTD) across three distinct topographical regions of Nepal: Terai, Hilly, and Himalayan, over four seasons: winter, spring, summer, and autumn. The analysis reveals that the Terai region, characterized by lower elevations, consistently exhibits higher PWV and ZTD values compared to the high-altitude Himalayan region, with the Hilly region showing intermediate levels. Seasonal variations indicate the highest PWV and ZTD during the summer and the lowest during winter, reflecting the influence of monsoonal moisture. Diurnal variability analysis further shows significant fluctuations in PWV, with a minimum in the early morning (21:45–00:45 UTC) and at night (17:15–18:15 UTC) and a maximum during the warmest part of the day (6:15–9:15 UTC). These findings underscore the effectiveness of GNSS technology in monitoring atmospheric water vapor and highlight the significant impact of topography and seasonal cycles on PWV distribution in Nepal. Such research and insights are crucial for improving weather forecasting, advancing climate change research, and enhancing atmospheric monitoring in regions with diverse topographical features.
期刊介绍:
Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate.
Authors are invited to submit articles, short contributions or scholarly reviews in the following areas:
•Dynamic meteorology
•Physical oceanography
•Geophysical fluid dynamics
•Climate variability and climate change
•Atmosphere-ocean-biosphere-cryosphere interactions
•Prediction and predictability
•Scale interactions
Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.