Recent advances on photocatalytic degradation of phthalate ester plasticizers using nanomaterial photocatalysts

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Huanshun Yin , Yunlei Zhou , Chengji Sui , Jia Ding , Jun Wang
{"title":"Recent advances on photocatalytic degradation of phthalate ester plasticizers using nanomaterial photocatalysts","authors":"Huanshun Yin ,&nbsp;Yunlei Zhou ,&nbsp;Chengji Sui ,&nbsp;Jia Ding ,&nbsp;Jun Wang","doi":"10.1016/j.envres.2025.121497","DOIUrl":null,"url":null,"abstract":"<div><div>Phthalate esters (PAEs) are a class of organic ester compounds containing benzene rings, which have been widely applied as additives in various fields, especially as plasticizers in plastic product to improve the flexibility. Due to the non- covalent bonding, PAEs inevitably leach out from the plastic polymers into environments. PAEs are endocrine disruptors, which possess seriously hazards to organisms, such as reproductive and genetic abnormalities. Now, PAEs pollution has become a serious environmental problem. Moreover, due to its difficulty in natural degradation, it has become a widespread concern to eliminate PAEs pollution with energy-saving technology. Among various degradation technologies for organic pollutant removal, photocatalytic degradation has attracted more attentions due to the merits of low energy consumption, high removal efficiency, abundant photocatalyst and low secondary pollution. In this article, the photocatalytic degradation using nanomaterial photocatalysts towards four kinds of typical PAEs were reviewed, including di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), dimethyl phthalate (DMP), and diethyl phthalate (DEP). To improve the photocatalytic degradation efficiency, various semiconductor photocatalysts have been developed, and the optical and electrochemical properties, and the degradation mechanism and pathway have been also discussed. Finally, the challenges and perspectives of photocatalytic technology on PAEs elimination were presented.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"276 ","pages":"Article 121497"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125007480","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Phthalate esters (PAEs) are a class of organic ester compounds containing benzene rings, which have been widely applied as additives in various fields, especially as plasticizers in plastic product to improve the flexibility. Due to the non- covalent bonding, PAEs inevitably leach out from the plastic polymers into environments. PAEs are endocrine disruptors, which possess seriously hazards to organisms, such as reproductive and genetic abnormalities. Now, PAEs pollution has become a serious environmental problem. Moreover, due to its difficulty in natural degradation, it has become a widespread concern to eliminate PAEs pollution with energy-saving technology. Among various degradation technologies for organic pollutant removal, photocatalytic degradation has attracted more attentions due to the merits of low energy consumption, high removal efficiency, abundant photocatalyst and low secondary pollution. In this article, the photocatalytic degradation using nanomaterial photocatalysts towards four kinds of typical PAEs were reviewed, including di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), dimethyl phthalate (DMP), and diethyl phthalate (DEP). To improve the photocatalytic degradation efficiency, various semiconductor photocatalysts have been developed, and the optical and electrochemical properties, and the degradation mechanism and pathway have been also discussed. Finally, the challenges and perspectives of photocatalytic technology on PAEs elimination were presented.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信