Circular design criteria and indicators for the sustainable life cycle management of electric vehicle batteries

IF 10.9 1区 环境科学与生态学 Q1 ENVIRONMENTAL STUDIES
Aitor Picatoste , Daniel Justel , Joan Manuel F. Mendoza
{"title":"Circular design criteria and indicators for the sustainable life cycle management of electric vehicle batteries","authors":"Aitor Picatoste ,&nbsp;Daniel Justel ,&nbsp;Joan Manuel F. Mendoza","doi":"10.1016/j.spc.2025.02.013","DOIUrl":null,"url":null,"abstract":"<div><div>The implementation of circular economy (CE) criteria and indicators in the design stage of electric vehicle (EV) batteries could optimise their life cycle resource efficiency and environmental performance. However, the viability of using circularity criteria and indicators to develop more environmentally sustainable EV batteries remains unclear due to the lack of scientific and industrial case studies. The goal of this paper is to show the perceptions from relevant stakeholders about the suitability of the implementation of circularity criteria and indicators for EV batteries design and life cycle management (LCM). A total of 24 industrial and academic stakeholders were engaged in individual meetings to assess the importance and applicability of 30 circularity design criteria and 15 product-level circularity indicators, collected through a review of academic papers, policy regulations, and industry reports. According to the consulted stakeholders, i) <em>“focus on quality of performance”, ii) “favour cleaner production”,</em> and iii) <em>“use digitalisation and internet-of-things solutions”</em> were identified as the most suitable criteria for implementation. Regarding circularity indicators, End of Life Indices and the Product Circularity Indicator were considered the most relevant for use due to their coverage of multiple life cycle stages and circularity strategies. However, the results suggest a discrepancy in stakeholders' views regarding the best circular design criteria and the most suitable circularity indicators. Consequently, there is yet a lack of adequate indicators for sustainable EV battery design and LCM incorporating the required circular design criteria. Accordingly, future research should focus on defining and aligning specific circularity criteria and indicators for EV batteries to support and monitor sustainable innovation.</div></div>","PeriodicalId":48619,"journal":{"name":"Sustainable Production and Consumption","volume":"56 ","pages":"Pages 182-206"},"PeriodicalIF":10.9000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Production and Consumption","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352550925000351","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

The implementation of circular economy (CE) criteria and indicators in the design stage of electric vehicle (EV) batteries could optimise their life cycle resource efficiency and environmental performance. However, the viability of using circularity criteria and indicators to develop more environmentally sustainable EV batteries remains unclear due to the lack of scientific and industrial case studies. The goal of this paper is to show the perceptions from relevant stakeholders about the suitability of the implementation of circularity criteria and indicators for EV batteries design and life cycle management (LCM). A total of 24 industrial and academic stakeholders were engaged in individual meetings to assess the importance and applicability of 30 circularity design criteria and 15 product-level circularity indicators, collected through a review of academic papers, policy regulations, and industry reports. According to the consulted stakeholders, i) “focus on quality of performance”, ii) “favour cleaner production”, and iii) “use digitalisation and internet-of-things solutions” were identified as the most suitable criteria for implementation. Regarding circularity indicators, End of Life Indices and the Product Circularity Indicator were considered the most relevant for use due to their coverage of multiple life cycle stages and circularity strategies. However, the results suggest a discrepancy in stakeholders' views regarding the best circular design criteria and the most suitable circularity indicators. Consequently, there is yet a lack of adequate indicators for sustainable EV battery design and LCM incorporating the required circular design criteria. Accordingly, future research should focus on defining and aligning specific circularity criteria and indicators for EV batteries to support and monitor sustainable innovation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Production and Consumption
Sustainable Production and Consumption Environmental Science-Environmental Engineering
CiteScore
17.40
自引率
7.40%
发文量
389
审稿时长
13 days
期刊介绍: Sustainable production and consumption refers to the production and utilization of goods and services in a way that benefits society, is economically viable, and has minimal environmental impact throughout its entire lifespan. Our journal is dedicated to publishing top-notch interdisciplinary research and practical studies in this emerging field. We take a distinctive approach by examining the interplay between technology, consumption patterns, and policy to identify sustainable solutions for both production and consumption systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信