Predicción de la sobrevida global y libre de recaída en pacientes con cáncer de mama triple negativo a través de agrupaciones basadas en el aprendizaje automático sobre datos clínicos

IF 0.2 Q4 OBSTETRICS & GYNECOLOGY
Juan Pablo Alzate-Granados, Luis Fernando Niño
{"title":"Predicción de la sobrevida global y libre de recaída en pacientes con cáncer de mama triple negativo a través de agrupaciones basadas en el aprendizaje automático sobre datos clínicos","authors":"Juan Pablo Alzate-Granados,&nbsp;Luis Fernando Niño","doi":"10.1016/j.senol.2025.100686","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Triple-negative breast cancer (TNBC) accounts for 15%–20% of all breast cancers and is characterised by the absence of hormone and HER2 receptors, limiting therapeutic options to cytotoxic chemotherapy. This subtype is highly aggressive, with frequent relapses and a poor prognosis. The integration of clinical and molecular data using machine learning algorithms offers an opportunity to improve the prediction of clinical outcomes and personalise the management of this disease.</div></div><div><h3>Objective</h3><div>To develop predictive models to estimate overall survival (OS) and relapse-free survival (RFS) in patients with TNBC.</div></div><div><h3>Methods</h3><div>A retrospective cohort study was conducted with 4,808 patients diagnosed between 2012 and 2024. Patients were grouped using the k-prototypes algorithm for mixed data. Demographic and clinical variables, biomarkers, and clinical outcomes were analysed. Multivariate analyses and Cox proportional hazards models were used to assess the association between clusters and OS and RFS outcomes.</div></div><div><h3>Results</h3><div>Four clusters of patients were identified. The highest risk group (cluster 3) had the highest mortality (42.3%; HR: 1.94; 95% CI: 1.63–2.30) and relapse (54.25%; HR: 1.68; 95% CI: 1.45–1.95), whereas cluster 0 had the best outcomes (mortality of 22.51%). Factors such as mutations in PIK3CA (HR: 1.535; <em>p</em> <!-->=<!--> <!-->0.001) and TP53 (HR: 1.180; <em>p</em> <!-->=<!--> <!-->0.023) were associated with adverse outcomes.</div></div><div><h3>Discussion</h3><div>The results support the utility of cluster-based stratification to predict outcomes and guide personalised interventions in TNBC.</div></div>","PeriodicalId":38058,"journal":{"name":"Revista de Senologia y Patologia Mamaria","volume":"38 4","pages":"Article 100686"},"PeriodicalIF":0.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Senologia y Patologia Mamaria","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0214158225000222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Triple-negative breast cancer (TNBC) accounts for 15%–20% of all breast cancers and is characterised by the absence of hormone and HER2 receptors, limiting therapeutic options to cytotoxic chemotherapy. This subtype is highly aggressive, with frequent relapses and a poor prognosis. The integration of clinical and molecular data using machine learning algorithms offers an opportunity to improve the prediction of clinical outcomes and personalise the management of this disease.

Objective

To develop predictive models to estimate overall survival (OS) and relapse-free survival (RFS) in patients with TNBC.

Methods

A retrospective cohort study was conducted with 4,808 patients diagnosed between 2012 and 2024. Patients were grouped using the k-prototypes algorithm for mixed data. Demographic and clinical variables, biomarkers, and clinical outcomes were analysed. Multivariate analyses and Cox proportional hazards models were used to assess the association between clusters and OS and RFS outcomes.

Results

Four clusters of patients were identified. The highest risk group (cluster 3) had the highest mortality (42.3%; HR: 1.94; 95% CI: 1.63–2.30) and relapse (54.25%; HR: 1.68; 95% CI: 1.45–1.95), whereas cluster 0 had the best outcomes (mortality of 22.51%). Factors such as mutations in PIK3CA (HR: 1.535; p = 0.001) and TP53 (HR: 1.180; p = 0.023) were associated with adverse outcomes.

Discussion

The results support the utility of cluster-based stratification to predict outcomes and guide personalised interventions in TNBC.
通过基于临床数据的机器学习分组预测三阴性乳腺癌患者的整体无复发生存
三阴性乳腺癌(TNBC)占所有乳腺癌的15%-20%,其特点是缺乏激素和HER2受体,限制了治疗选择的细胞毒性化疗。该亚型侵袭性强,复发频繁,预后差。使用机器学习算法整合临床和分子数据为改进临床结果预测和个性化疾病管理提供了机会。目的建立预测TNBC患者总生存期(OS)和无复发生存期(RFS)的预测模型。方法回顾性队列研究纳入2012 - 2024年诊断的4808例患者。使用混合数据的k-原型算法对患者进行分组。分析了人口统计学和临床变量、生物标志物和临床结果。使用多变量分析和Cox比例风险模型来评估聚类与OS和RFS结果之间的关系。结果共鉴定出4组患者。高危组(聚类3)死亡率最高,为42.3%;人力资源:1.94;95% CI: 1.63-2.30)和复发(54.25%;人力资源:1.68;95% CI: 1.45-1.95),而聚类0的结果最好(死亡率为22.51%)。PIK3CA突变等因素(HR: 1.535;p = 0.001)和TP53 (HR: 1.180;P = 0.023)与不良结局相关。研究结果支持基于聚类的分层在TNBC中预测结果和指导个性化干预的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista de Senologia y Patologia Mamaria
Revista de Senologia y Patologia Mamaria Medicine-Obstetrics and Gynecology
CiteScore
0.30
自引率
0.00%
发文量
74
审稿时长
63 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信