The functional extracellular vesicles target tumor microenvironment for gastrointestinal malignancies therapy

Dongqi Li , Xiangyu Chu , Yudong Ning , Yinmo Yang , Chen Wang , Xiaodong Tian , Yanlian Yang
{"title":"The functional extracellular vesicles target tumor microenvironment for gastrointestinal malignancies therapy","authors":"Dongqi Li ,&nbsp;Xiangyu Chu ,&nbsp;Yudong Ning ,&nbsp;Yinmo Yang ,&nbsp;Chen Wang ,&nbsp;Xiaodong Tian ,&nbsp;Yanlian Yang","doi":"10.1016/j.vesic.2025.100077","DOIUrl":null,"url":null,"abstract":"<div><div>The tumor microenvironment (TME) represents a complex, heterogeneous ecosystem that significantly influences the progression of gastrointestinal (GI) cancers, comprising diverse cellular and non-cellular components. Although chemotherapeutic agents and targeted therapies offer partial benefits for patients with GI tumors, their efficacy remains limited due to the TME's complexity. Consequently, strategies to target and modulate the TME are critical to enhancing therapeutic outcomes. Extracellular vesicles (EVs) transport a wide array of biomolecules, including proteins, lipids, and nucleic acids, playing a pivotal role in intercellular communication and TME modulation. In recent years, EVs have gained attention as potential drug delivery vehicles, owing to their nanoscale size and capacity to shuttle bioactive molecules between cells and tissues. Moreover, engineered EVs hold promise for modulating the TME to treat GI cancers by improving targeting precision and tissue penetration. This review explores the latest strategies for the production and functionalization of EVs, along with advances in utilizing EVs for targeted therapy of the TME in GI tumor treatment.</div></div>","PeriodicalId":73007,"journal":{"name":"Extracellular vesicle","volume":"5 ","pages":"Article 100077"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extracellular vesicle","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773041725000137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The tumor microenvironment (TME) represents a complex, heterogeneous ecosystem that significantly influences the progression of gastrointestinal (GI) cancers, comprising diverse cellular and non-cellular components. Although chemotherapeutic agents and targeted therapies offer partial benefits for patients with GI tumors, their efficacy remains limited due to the TME's complexity. Consequently, strategies to target and modulate the TME are critical to enhancing therapeutic outcomes. Extracellular vesicles (EVs) transport a wide array of biomolecules, including proteins, lipids, and nucleic acids, playing a pivotal role in intercellular communication and TME modulation. In recent years, EVs have gained attention as potential drug delivery vehicles, owing to their nanoscale size and capacity to shuttle bioactive molecules between cells and tissues. Moreover, engineered EVs hold promise for modulating the TME to treat GI cancers by improving targeting precision and tissue penetration. This review explores the latest strategies for the production and functionalization of EVs, along with advances in utilizing EVs for targeted therapy of the TME in GI tumor treatment.
功能性细胞外囊泡靶向肿瘤微环境用于胃肠道恶性肿瘤的治疗
肿瘤微环境(TME)代表了一个复杂的、异质性的生态系统,它显著影响胃肠道(GI)癌症的进展,包括多种细胞和非细胞成分。尽管化疗药物和靶向治疗为胃肠道肿瘤患者提供了部分益处,但由于TME的复杂性,其疗效仍然有限。因此,靶向和调节TME的策略对于提高治疗效果至关重要。细胞外囊泡(EVs)运输多种生物分子,包括蛋白质、脂质和核酸,在细胞间通讯和TME调节中起着关键作用。近年来,电动汽车由于其纳米级的尺寸和在细胞和组织之间穿梭生物活性分子的能力,作为潜在的药物递送载体而受到关注。此外,工程电动汽车有望通过提高靶向精度和组织穿透性来调节TME来治疗胃肠道癌症。本文综述了ev的产生和功能化的最新策略,以及利用ev靶向治疗胃肠道肿瘤TME的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Extracellular vesicle
Extracellular vesicle Biochemistry, Genetics and Molecular Biology (General)
自引率
0.00%
发文量
0
审稿时长
43 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信