High–strength, solvent–resistant carboxymethyl chitosan composite rubber based on dual covalent crosslinking network and hydrogen bond network for multi–functional sensing
Wenyu Pan , Zequan Li , Fangyan Ou , Zhichao Zhang , Changsheng Wang , Ting Xie , Chuang Ning , Riyao Cong , Xuehan Gao , Zhiyong Qin , Zengxi Wei , Qian Sun , Wei Gao , Yan Qing , Shuangliang Zhao
{"title":"High–strength, solvent–resistant carboxymethyl chitosan composite rubber based on dual covalent crosslinking network and hydrogen bond network for multi–functional sensing","authors":"Wenyu Pan , Zequan Li , Fangyan Ou , Zhichao Zhang , Changsheng Wang , Ting Xie , Chuang Ning , Riyao Cong , Xuehan Gao , Zhiyong Qin , Zengxi Wei , Qian Sun , Wei Gao , Yan Qing , Shuangliang Zhao","doi":"10.1016/j.ijbiomac.2025.142437","DOIUrl":null,"url":null,"abstract":"<div><div>In order to prepare natural polymer composite rubber with excellent mechanical properties, solvent resistance and electrical conductivity, and to apply it to multifunctional sensing. In this study, an environmentally friendly and effective strategy was employed to solve these problems. Carboxymethyl chitosan composite rubber was prepared by introducing the dual covalent crosslinking network into carboxy nitrile butadiene rubber via amide and radical reactions, followed by blending with carboxymethyl chitosan to introduce a hydrogen bonding network. The tensile strength of the prepared composite rubber was increased by 45 times, the crosslink density was increased by 405 times, the mechanical properties and solvent resistance were significantly improved, and the electrical conductivity was also obtained. Based on these excellent properties, carboxymethyl chitosan composite rubber can be used in strain sensors to detect human movement, and realize information encryption; it can also be used in humidity sensors to detect human respiration, environmental humidity and industrial pipeline safety. The nature polymer composite rubber prepared in this work will have great potential for application in flexible electronic devices.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"309 ","pages":"Article 142437"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025029897","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In order to prepare natural polymer composite rubber with excellent mechanical properties, solvent resistance and electrical conductivity, and to apply it to multifunctional sensing. In this study, an environmentally friendly and effective strategy was employed to solve these problems. Carboxymethyl chitosan composite rubber was prepared by introducing the dual covalent crosslinking network into carboxy nitrile butadiene rubber via amide and radical reactions, followed by blending with carboxymethyl chitosan to introduce a hydrogen bonding network. The tensile strength of the prepared composite rubber was increased by 45 times, the crosslink density was increased by 405 times, the mechanical properties and solvent resistance were significantly improved, and the electrical conductivity was also obtained. Based on these excellent properties, carboxymethyl chitosan composite rubber can be used in strain sensors to detect human movement, and realize information encryption; it can also be used in humidity sensors to detect human respiration, environmental humidity and industrial pipeline safety. The nature polymer composite rubber prepared in this work will have great potential for application in flexible electronic devices.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.