Avoiding automation surprise: Identifying requirements to support pilot intervention in automated Uncrewed Aerial Vehicle (UAV) flight

IF 3.1 2区 工程技术 Q2 ENGINEERING, INDUSTRIAL
Ben Grindley , Katie Phillips , Katie J. Parnell , Tom Cherrett , James Scanlan , Katherine L. Plant
{"title":"Avoiding automation surprise: Identifying requirements to support pilot intervention in automated Uncrewed Aerial Vehicle (UAV) flight","authors":"Ben Grindley ,&nbsp;Katie Phillips ,&nbsp;Katie J. Parnell ,&nbsp;Tom Cherrett ,&nbsp;James Scanlan ,&nbsp;Katherine L. Plant","doi":"10.1016/j.apergo.2025.104516","DOIUrl":null,"url":null,"abstract":"<div><div>The breadth and depth of Uncrewed Aerial Vehicle (UAV) operations are expanding at a considerable rate. With expansion comes challenges for the design of automation to support decision making. This research takes the perceptual cycle model (PCM) and the derived trust version of the Schema World Action Research Method (T-SWARM), to identify the issues and challenges of pilot intervention in UAVs operating during highly automated states. Nine UAV pilots with current experience operating medium to large UAVs were interviewed, using T-SWARM, about incidents in which they initiated an intervention in system operation (i.e. to avoid weather or collision) and an event where the system initiated the intervention (i.e. due to system failure). The coded responses highlighted the challenges with what information is displayed, how it is displayed and how it influences decision-making in the UAV context. In addition, the responses also identified aspects that influence trust in the system, including personal disposition, affect interventions with the automation. Against each of the key factors identified recommendations are made to increase safety and operational efficiency of UAV operations. This research adds to the growing body of literature that supports the application of T-SWARM for eliciting knowledge in the aviation domain and specifically within the UAV domain.</div></div>","PeriodicalId":55502,"journal":{"name":"Applied Ergonomics","volume":"127 ","pages":"Article 104516"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003687025000523","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

The breadth and depth of Uncrewed Aerial Vehicle (UAV) operations are expanding at a considerable rate. With expansion comes challenges for the design of automation to support decision making. This research takes the perceptual cycle model (PCM) and the derived trust version of the Schema World Action Research Method (T-SWARM), to identify the issues and challenges of pilot intervention in UAVs operating during highly automated states. Nine UAV pilots with current experience operating medium to large UAVs were interviewed, using T-SWARM, about incidents in which they initiated an intervention in system operation (i.e. to avoid weather or collision) and an event where the system initiated the intervention (i.e. due to system failure). The coded responses highlighted the challenges with what information is displayed, how it is displayed and how it influences decision-making in the UAV context. In addition, the responses also identified aspects that influence trust in the system, including personal disposition, affect interventions with the automation. Against each of the key factors identified recommendations are made to increase safety and operational efficiency of UAV operations. This research adds to the growing body of literature that supports the application of T-SWARM for eliciting knowledge in the aviation domain and specifically within the UAV domain.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Ergonomics
Applied Ergonomics 工程技术-工程:工业
CiteScore
7.50
自引率
9.40%
发文量
248
审稿时长
53 days
期刊介绍: Applied Ergonomics is aimed at ergonomists and all those interested in applying ergonomics/human factors in the design, planning and management of technical and social systems at work or leisure. Readership is truly international with subscribers in over 50 countries. Professionals for whom Applied Ergonomics is of interest include: ergonomists, designers, industrial engineers, health and safety specialists, systems engineers, design engineers, organizational psychologists, occupational health specialists and human-computer interaction specialists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信