Harnessing machine learning for identifying parameters in fractional chaotic systems

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Ce Liang , Weiyuan Ma , Chenjun Ma , Ling Guo
{"title":"Harnessing machine learning for identifying parameters in fractional chaotic systems","authors":"Ce Liang ,&nbsp;Weiyuan Ma ,&nbsp;Chenjun Ma ,&nbsp;Ling Guo","doi":"10.1016/j.amc.2025.129454","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates data-driven learning techniques for fractional chaotic systems (FCS), specifically those utilizing the Caputo derivative. Three machine learning (ML) methods are employed for parameter estimation: feedforward neural networks (FNN), long short-term memory (LSTM), and gated recurrent units (GRU). Optimization problems are formulated, and the well-known algorithms, Backpropagation Through Time (BPTT) and Adam, are employed to train the weights and parameters of the ML models. Systematic numerical testing reveals that LSTM demonstrates superior recognition performance for undisturbed data, while GRU achieves higher accuracy in the presence of disturbances. This study presents a highly accurate approach for solving parameter inverse problems, with the potential for extending these methods to other fractional systems.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"500 ","pages":"Article 129454"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009630032500181X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates data-driven learning techniques for fractional chaotic systems (FCS), specifically those utilizing the Caputo derivative. Three machine learning (ML) methods are employed for parameter estimation: feedforward neural networks (FNN), long short-term memory (LSTM), and gated recurrent units (GRU). Optimization problems are formulated, and the well-known algorithms, Backpropagation Through Time (BPTT) and Adam, are employed to train the weights and parameters of the ML models. Systematic numerical testing reveals that LSTM demonstrates superior recognition performance for undisturbed data, while GRU achieves higher accuracy in the presence of disturbances. This study presents a highly accurate approach for solving parameter inverse problems, with the potential for extending these methods to other fractional systems.
利用机器学习识别分数阶混沌系统中的参数
本文研究了分数阶混沌系统(FCS)的数据驱动学习技术,特别是那些利用卡普托导数的技术。参数估计采用了三种机器学习方法:前馈神经网络(FNN)、长短期记忆(LSTM)和门控循环单元(GRU)。提出了优化问题,并采用著名的时间反向传播算法(BPTT)和Adam算法来训练ML模型的权值和参数。系统的数值测试表明,LSTM对无干扰的数据具有较好的识别性能,而GRU在有干扰的情况下具有较高的识别精度。本研究提出了一种高度精确的方法来解决参数逆问题,具有将这些方法扩展到其他分数系统的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信