Size matters: Anaerobic granules exhibit distinct ecological and physico-chemical gradients across biofilm size

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Anna Trego , Cristina Morabito , Isabelle Bourven , Giles Guibaud , Vincent O'Flaherty , Gavin Collins , Umer Zeeshan Ijaz
{"title":"Size matters: Anaerobic granules exhibit distinct ecological and physico-chemical gradients across biofilm size","authors":"Anna Trego ,&nbsp;Cristina Morabito ,&nbsp;Isabelle Bourven ,&nbsp;Giles Guibaud ,&nbsp;Vincent O'Flaherty ,&nbsp;Gavin Collins ,&nbsp;Umer Zeeshan Ijaz","doi":"10.1016/j.ese.2025.100561","DOIUrl":null,"url":null,"abstract":"<div><div>Anaerobic biological decomposition of organic matter is ubiquitous in Nature wherever anaerobic environments prevail, and is catalysed by hydrolytic, fermentative, acetogenic, methanogenic, and various other groups. It is also harnessed in innovative ways in engineered systems that may rely on small (0.1–4.0 mm), spherical, anaerobic granules. These biofilms are crucial to the operational success of a range of widely applied engineered-ecosystems designed for wastewater treatment. The structure and function of granule microbiomes underpin their utility. Here, granules were separated into ten size fractions (proxies for age), hypothesizing that small granules are ‘young’ and larger ones are ‘old’. Gradients were observed across size in terms of volatile solids, density, settleability, biofilm morphology, methanogenic activity, and profiles of extracellular polymeric substances, suggesting ongoing development of physico-chemical characteristics as granules develop. Short-read amplicon sequencing indicated a negative relationship between granule size and community diversity. Furthermore, as size increased, the methanogenic archaea dominated the microbiome. Small granules were found to harbour a sub-group of highly specific taxa, and the identification of generalists and specialists may point to substantial resilience of the microbiome. The findings of this study indicate opportunities for precision management of wastewater treatment systems. They suggest that size is an important indicator for aggregate utility – size may, indeed, determine many of the characteristics of both the individual-granule microbiomes and the overall function of a wastewater treatment system.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"25 ","pages":"Article 100561"},"PeriodicalIF":14.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498425000390","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Anaerobic biological decomposition of organic matter is ubiquitous in Nature wherever anaerobic environments prevail, and is catalysed by hydrolytic, fermentative, acetogenic, methanogenic, and various other groups. It is also harnessed in innovative ways in engineered systems that may rely on small (0.1–4.0 mm), spherical, anaerobic granules. These biofilms are crucial to the operational success of a range of widely applied engineered-ecosystems designed for wastewater treatment. The structure and function of granule microbiomes underpin their utility. Here, granules were separated into ten size fractions (proxies for age), hypothesizing that small granules are ‘young’ and larger ones are ‘old’. Gradients were observed across size in terms of volatile solids, density, settleability, biofilm morphology, methanogenic activity, and profiles of extracellular polymeric substances, suggesting ongoing development of physico-chemical characteristics as granules develop. Short-read amplicon sequencing indicated a negative relationship between granule size and community diversity. Furthermore, as size increased, the methanogenic archaea dominated the microbiome. Small granules were found to harbour a sub-group of highly specific taxa, and the identification of generalists and specialists may point to substantial resilience of the microbiome. The findings of this study indicate opportunities for precision management of wastewater treatment systems. They suggest that size is an important indicator for aggregate utility – size may, indeed, determine many of the characteristics of both the individual-granule microbiomes and the overall function of a wastewater treatment system.

Abstract Image

大小问题:厌氧颗粒在生物膜大小上表现出不同的生态和物理化学梯度
有机物的厌氧生物分解在自然界中无处不在,它由水解、发酵、产丙酮、产甲烷和其他各种基团催化。它还以创新的方式应用于工程系统中,这些系统可能依赖于小型(0.1-4.0毫米)球形厌氧颗粒。这些生物膜对于一系列广泛应用于污水处理的工程生态系统的操作成功至关重要。颗粒微生物组的结构和功能是其实用性的基础。在这里,颗粒被分成十个大小的分数(代表年龄),假设小颗粒是“年轻的”,大颗粒是“老的”。在挥发性固体、密度、可沉降性、生物膜形态、产甲烷活性和细胞外聚合物质的分布方面,观察到不同大小的梯度,表明随着颗粒的形成,物理化学特征正在不断发展。短读扩增子测序结果表明,颗粒大小与群落多样性呈负相关。此外,随着体型的增加,产甲烷的古菌在微生物群中占主导地位。小颗粒被发现含有高度特异性分类群的亚群,对通才和专才的识别可能表明微生物组具有实质性的弹性。这项研究的结果表明了废水处理系统精确管理的机会。他们认为,大小是总体效用的一个重要指标——实际上,大小可能决定了单个颗粒微生物群的许多特征和废水处理系统的整体功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信