Structural-acoustic analysis of partially submerged laminated composite cylinders containing partially filled fluid: Considering transverse shear deformation

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
M. Montasheri, A. Tarkashvand, K. Daneshjou
{"title":"Structural-acoustic analysis of partially submerged laminated composite cylinders containing partially filled fluid: Considering transverse shear deformation","authors":"M. Montasheri,&nbsp;A. Tarkashvand,&nbsp;K. Daneshjou","doi":"10.1016/j.wavemoti.2025.103549","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the vibroacoustic behavior of a partially submerged laminated composite cylindrical shell containing a partially filled fluid. In this study, three different coordinate systems are employed: one focusing on structural dynamics, while the other two are used to calculate the expression for acoustic pressure radiation within the external and internal fluids. By utilizing the coordinates related to acoustic pressure, the study obtains a sine series expression for the sound pressure to satisfy the boundary condition on the free surface of both the internal and external acoustic media. As the cylindrical structure experiences transverse shear deformation, the First-Order Shear Deformation Theory (FSDT) is applied to simulate the dynamic behavior of the composite shell. Additionally, the study examines fluid-structure compatibility at the interface, establishing a relationship between the sound pressure radiation in the acoustic medium and the structure's vibration. Finally, by utilizing the Galerkin method, the frequency responses of the vibroacoustic behavior are obtained. The numerical results illustrate how various acoustical and structural parameters affect vibroacoustic behavior. These parameters include the nondimensional fluid height inside and around the composite structure, the material of the composite layers, and different stacking sequences of symmetric and anti-symmetric laminated composites. Furthermore, the study presents contour plots of sound pressure, offering insights into the wavelengths of acoustic pressure at different frequencies and load distribution angles.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"137 ","pages":"Article 103549"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525000605","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the vibroacoustic behavior of a partially submerged laminated composite cylindrical shell containing a partially filled fluid. In this study, three different coordinate systems are employed: one focusing on structural dynamics, while the other two are used to calculate the expression for acoustic pressure radiation within the external and internal fluids. By utilizing the coordinates related to acoustic pressure, the study obtains a sine series expression for the sound pressure to satisfy the boundary condition on the free surface of both the internal and external acoustic media. As the cylindrical structure experiences transverse shear deformation, the First-Order Shear Deformation Theory (FSDT) is applied to simulate the dynamic behavior of the composite shell. Additionally, the study examines fluid-structure compatibility at the interface, establishing a relationship between the sound pressure radiation in the acoustic medium and the structure's vibration. Finally, by utilizing the Galerkin method, the frequency responses of the vibroacoustic behavior are obtained. The numerical results illustrate how various acoustical and structural parameters affect vibroacoustic behavior. These parameters include the nondimensional fluid height inside and around the composite structure, the material of the composite layers, and different stacking sequences of symmetric and anti-symmetric laminated composites. Furthermore, the study presents contour plots of sound pressure, offering insights into the wavelengths of acoustic pressure at different frequencies and load distribution angles.
含部分充注流体的部分淹没层合复合材料圆柱体结构声分析:考虑横向剪切变形
本文研究了含部分填充流体的部分浸没层压复合材料圆柱壳的振动声特性。在本研究中,采用了三种不同的坐标系:一个关注结构动力学,另外两个用于计算外部和内部流体的声压辐射表达式。利用声压相关坐标,得到了满足内外声介质自由表面边界条件的声压正弦级数表达式。当圆柱结构经历横向剪切变形时,应用一阶剪切变形理论(FSDT)对复合材料壳的动力特性进行了模拟。此外,研究还考察了界面处的流固相容性,建立了声介质中声压辐射与结构振动之间的关系。最后,利用伽辽金方法得到了振动声特性的频率响应。数值结果说明了不同的声学参数和结构参数对振声特性的影响。这些参数包括复合材料结构内部和周围的无因次流体高度、复合材料层的材料、对称和反对称层状复合材料的不同堆叠顺序。此外,该研究还绘制了声压等值线图,提供了不同频率下声压波长和负载分布角度的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信