{"title":"Adenosine Triphosphate Harnessed Transient Aggregations of Nanoparticles for Efficient Nanoreactors in Water","authors":"Chunyu Pan, Junjie Dong, Bai Yang, Yunfeng Li","doi":"10.1021/acs.langmuir.5c00842","DOIUrl":null,"url":null,"abstract":"Living cells utilize diverse biochemical reactions occurring in microcompartments to regulate important biological functions. Although transient nanoreactors mediated by diverse fuels are achieved in discrete nanoassemblies of synthetic building blocks, the slow diffusion of substrates in and out of these solvent-dispersed nanoassemblies greatly compromises the reaction efficiency. Herein, we report adenosine triphosphate (ATP)-driven transient aggregation of nanoreactors that enable the acceleration of nucleophilic aromatic substitution (S<sub>N</sub>Ar) in an aqueous solution. This system is composed of nanoparticles self-assembled from an amphiphilic molecule containing an ATP receptor, ATP, and potato apyrase (PA). The sequential addition of ATP and PA results in a reversible aggregation and disaggregation of the nanoparticles, which serve as smart nanoreactors to accelerate the S<sub>N</sub>Ar reaction on demand. Notably, this reaction is temporally regulated by the autonomous aggregation and disaggregation of the nanoparticles. Furthermore, the azobenzene moiety in amphiphilic molecules allows the further modulation of the S<sub>N</sub>Ar reaction in the nanoreactors using ultraviolet light.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"22 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c00842","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Living cells utilize diverse biochemical reactions occurring in microcompartments to regulate important biological functions. Although transient nanoreactors mediated by diverse fuels are achieved in discrete nanoassemblies of synthetic building blocks, the slow diffusion of substrates in and out of these solvent-dispersed nanoassemblies greatly compromises the reaction efficiency. Herein, we report adenosine triphosphate (ATP)-driven transient aggregation of nanoreactors that enable the acceleration of nucleophilic aromatic substitution (SNAr) in an aqueous solution. This system is composed of nanoparticles self-assembled from an amphiphilic molecule containing an ATP receptor, ATP, and potato apyrase (PA). The sequential addition of ATP and PA results in a reversible aggregation and disaggregation of the nanoparticles, which serve as smart nanoreactors to accelerate the SNAr reaction on demand. Notably, this reaction is temporally regulated by the autonomous aggregation and disaggregation of the nanoparticles. Furthermore, the azobenzene moiety in amphiphilic molecules allows the further modulation of the SNAr reaction in the nanoreactors using ultraviolet light.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).