Yunxia Zu , Zhiling Li , Zimeng Zhang , Xueqi Chen , Bin Wu , Shih-Hsin Ho , Aijie Wang
{"title":"Iron-reduction driven extracellular electron transfer widely promotes microbial reductive dechlorination metabolism","authors":"Yunxia Zu , Zhiling Li , Zimeng Zhang , Xueqi Chen , Bin Wu , Shih-Hsin Ho , Aijie Wang","doi":"10.1016/j.watres.2025.123592","DOIUrl":null,"url":null,"abstract":"<div><div>Biological iron reduction and reductive dehalogenation occur in similar ecological environments, however, how Fe(III)/Fe(II) redox cycles impact the microbial dehalogenation processes remains controversial. In this study, the favorable microbial reductive dechlorination activity has been widely observed in iron-rich river sediments by national sampling, with the dechlorination efficiency showing a positive correlation with the concentration of Fe(III). Microcosm experiments demonstrated that the addition of nano-hematite resulted in a maximum increase of 2.16 times in the dechlorination rate constant (<em>k</em>) for 2,4,6-trichlorophenol, achieved <em>via</em> synergistic interactions with Fe(III) reduction. Multi-tools, including transcriptomic analyses, revealed that the addition of nano-hematite enhanced the process of Fe(III) reduction by upregulating genes associated with extracellular electron transfer (e.g., <em>CYC, pliM</em>) and conductive biofilm formation (e.g., <em>livH, secY, wza</em>). This synergistic Fe(III) reduction further facilitated intracellular carbon metabolism, energy production, and reductive dechlorination, as confirmed by the upregulated functional genes identified through transcriptomics and RT-<em>q</em>PCR. The discovery of the novel phenomenon involving synergistic Fe(III) reduction and dehalogenation broadens our understanding of the biochemical cycling of organohalides (e.g., chlorinated phenols) in iron-rich environment, and provides a feasible strategy for improving biodehalogenation through the regulation of carbon and electron flow at sites contaminated with organohalides.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"281 ","pages":"Article 123592"},"PeriodicalIF":11.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425005056","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biological iron reduction and reductive dehalogenation occur in similar ecological environments, however, how Fe(III)/Fe(II) redox cycles impact the microbial dehalogenation processes remains controversial. In this study, the favorable microbial reductive dechlorination activity has been widely observed in iron-rich river sediments by national sampling, with the dechlorination efficiency showing a positive correlation with the concentration of Fe(III). Microcosm experiments demonstrated that the addition of nano-hematite resulted in a maximum increase of 2.16 times in the dechlorination rate constant (k) for 2,4,6-trichlorophenol, achieved via synergistic interactions with Fe(III) reduction. Multi-tools, including transcriptomic analyses, revealed that the addition of nano-hematite enhanced the process of Fe(III) reduction by upregulating genes associated with extracellular electron transfer (e.g., CYC, pliM) and conductive biofilm formation (e.g., livH, secY, wza). This synergistic Fe(III) reduction further facilitated intracellular carbon metabolism, energy production, and reductive dechlorination, as confirmed by the upregulated functional genes identified through transcriptomics and RT-qPCR. The discovery of the novel phenomenon involving synergistic Fe(III) reduction and dehalogenation broadens our understanding of the biochemical cycling of organohalides (e.g., chlorinated phenols) in iron-rich environment, and provides a feasible strategy for improving biodehalogenation through the regulation of carbon and electron flow at sites contaminated with organohalides.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.