Daniel Němeček, David Nečas, Hironori Shinmori, Seido Yarimitsu, Max Marian, Martin Vrbka, Yoshinori Sawae, Ivan Křupka, Martin Hartl
{"title":"A glance into the boundary lubrication mechanism of PVA hydrogel after the reduction of interstitial fluid pressurization","authors":"Daniel Němeček, David Nečas, Hironori Shinmori, Seido Yarimitsu, Max Marian, Martin Vrbka, Yoshinori Sawae, Ivan Křupka, Martin Hartl","doi":"10.26599/frict.2025.9441106","DOIUrl":null,"url":null,"abstract":"<p>The present study introduces a tribological comparison of five polyvinyl alcohol (PVA) hydrogel specimens with different physiological properties, possible candidating materials for cartilage replacement. The superior lubrication of articular cartilage is believed to lie in solid-to-solid molecular interactions. Therefore, the focus was paid to the investigation of boundary lubrication with regard to interstitial fluid flow reduction. The experiments were carried out in a ball-on-plate (glass-on-hydrogel) configuration. Based on the experiments, we proposed a boundary lubrication mechanism, selected a hydrogel with the least surface damage and highlighted the desired properties that should be considered when developing the artificial cartilage.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"224 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441106","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study introduces a tribological comparison of five polyvinyl alcohol (PVA) hydrogel specimens with different physiological properties, possible candidating materials for cartilage replacement. The superior lubrication of articular cartilage is believed to lie in solid-to-solid molecular interactions. Therefore, the focus was paid to the investigation of boundary lubrication with regard to interstitial fluid flow reduction. The experiments were carried out in a ball-on-plate (glass-on-hydrogel) configuration. Based on the experiments, we proposed a boundary lubrication mechanism, selected a hydrogel with the least surface damage and highlighted the desired properties that should be considered when developing the artificial cartilage.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.