{"title":"A RISC-V 32-bit microprocessor based on two-dimensional semiconductors","authors":"Mingrui Ao, Xiucheng Zhou, Xinjie Kong, Saifei Gou, Sifan Chen, Xiangqi Dong, Yuxuan Zhu, Qicheng Sun, Zhejia Zhang, Jinshu Zhang, Qiran Zhang, Yan Hu, Chuming Sheng, Kaixuan Wang, Shuiyuan Wang, Jing Wan, Jun Han, Wenzhong Bao, Peng Zhou","doi":"10.1038/s41586-025-08759-9","DOIUrl":null,"url":null,"abstract":"Recently the quest for post-silicon semiconductors has escalated owing to the inherent limitations of conventional bulk semiconductors, which are plagued by issues such as drain-induced barrier lowering, interfacial-scattering-induced mobility degradation and a constrained current on/off ratio determined by semiconductor bandwidth. These challenges have prompted the search for more advanced materials, with atomic-layer-thick two-dimensional (2D) semiconductors emerging as a potential solution. Following over a decade of research advances, recent developments1–3 in wafer-scale growth and device fabrication have led to breakthroughs in 2D semiconductor electronics. However, the level of integration remains constrained to a few hundred transistors. We describe a reduced instruction set computing architecture (RISC-V) microprocessor capable of executing standard 32-bit instructions on 5,900 MoS2 transistors and a complete standard cell library based on 2D semiconductor technology. The library contains 25 types of logic units. In alignment with advances in silicon integrated circuits, we also co-optimized the process flow and design of the 2D logic circuits. Our combined manufacturing and design methodology has overcome the significant challenges associated with wafer-scale integration of 2D circuits and enabled a pioneering prototype of an MoS2 microprocessor that exemplifies the potential of 2D integrated-circuit technology beyond silicon. A RISC-V microprocessor capable of executing standard 32-bit instructions has been designed with 5,900 MoS2 transistors and a complete standard cell library based on 2D semiconductor technology.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"640 8059","pages":"654-661"},"PeriodicalIF":48.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-08759-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recently the quest for post-silicon semiconductors has escalated owing to the inherent limitations of conventional bulk semiconductors, which are plagued by issues such as drain-induced barrier lowering, interfacial-scattering-induced mobility degradation and a constrained current on/off ratio determined by semiconductor bandwidth. These challenges have prompted the search for more advanced materials, with atomic-layer-thick two-dimensional (2D) semiconductors emerging as a potential solution. Following over a decade of research advances, recent developments1–3 in wafer-scale growth and device fabrication have led to breakthroughs in 2D semiconductor electronics. However, the level of integration remains constrained to a few hundred transistors. We describe a reduced instruction set computing architecture (RISC-V) microprocessor capable of executing standard 32-bit instructions on 5,900 MoS2 transistors and a complete standard cell library based on 2D semiconductor technology. The library contains 25 types of logic units. In alignment with advances in silicon integrated circuits, we also co-optimized the process flow and design of the 2D logic circuits. Our combined manufacturing and design methodology has overcome the significant challenges associated with wafer-scale integration of 2D circuits and enabled a pioneering prototype of an MoS2 microprocessor that exemplifies the potential of 2D integrated-circuit technology beyond silicon. A RISC-V microprocessor capable of executing standard 32-bit instructions has been designed with 5,900 MoS2 transistors and a complete standard cell library based on 2D semiconductor technology.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.