Li-Wen Hui, Yee Lin Phang, Chen-Yang Ye, Jin-Yu Lai, Feng-Lian Zhang, Yao Fu, Yi-Feng Wang
{"title":"Remote Spin-Center Shift Enables Activation of Distal Benzylic C–O and C–N Bonds","authors":"Li-Wen Hui, Yee Lin Phang, Chen-Yang Ye, Jin-Yu Lai, Feng-Lian Zhang, Yao Fu, Yi-Feng Wang","doi":"10.1002/anie.202506771","DOIUrl":null,"url":null,"abstract":"A spin-center shift (SCS) is a radical process that commonly involves a 1,2-radical shift along with the elimination of an adjacent leaving group by a two-electron ionic movement. The conventional SCS process is largely limited to 1,2-radical translocation, while a remote SCS event involving 1,n-radical translocation over a greater distance to enable distal bond functionalization remains largely underexplored. Herein, we report the boryl radical-promoted distal deoxygenation and deamination of free benzylic alcohols and simple benzylic amines, respectively, through a remote SCS event. The reaction was initiated by the addition of a 4-dimethylaminopyridine (DMAP)-boryl radical to the carbonyl oxygen atom of a benzoate or benzamide. Then, radical translocation took place across the aromatic ring to promote benzylic C−O or C−N bond cleavage. The resulting radical intermediate subsequently coupled with various alkenes to afford a wide range of alkylated products. The proposed mechanistic pathway was supported by experimental investigations.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"146 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202506771","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A spin-center shift (SCS) is a radical process that commonly involves a 1,2-radical shift along with the elimination of an adjacent leaving group by a two-electron ionic movement. The conventional SCS process is largely limited to 1,2-radical translocation, while a remote SCS event involving 1,n-radical translocation over a greater distance to enable distal bond functionalization remains largely underexplored. Herein, we report the boryl radical-promoted distal deoxygenation and deamination of free benzylic alcohols and simple benzylic amines, respectively, through a remote SCS event. The reaction was initiated by the addition of a 4-dimethylaminopyridine (DMAP)-boryl radical to the carbonyl oxygen atom of a benzoate or benzamide. Then, radical translocation took place across the aromatic ring to promote benzylic C−O or C−N bond cleavage. The resulting radical intermediate subsequently coupled with various alkenes to afford a wide range of alkylated products. The proposed mechanistic pathway was supported by experimental investigations.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.