Peng Zheng, Lintong Wu, Michael Ka Ho Lee, Andy Nelson, Michael Betenbaugh, Ishan Barman
{"title":"Deep Learning-Powered Colloidal Digital SERS for Precise Monitoring of Cell Culture Media","authors":"Peng Zheng, Lintong Wu, Michael Ka Ho Lee, Andy Nelson, Michael Betenbaugh, Ishan Barman","doi":"10.1021/acs.nanolett.5c01071","DOIUrl":null,"url":null,"abstract":"Maintaining consistent quality in biomanufacturing is essential for producing high-quality complex biologics. Yet, current process analytical technologies (PAT) often fall short in achieving rapid and accurate monitoring of small-molecule critical process parameters and critical quality attributes. Surface-enhanced Raman spectroscopy (SERS) holds great promise but faces challenges like intensity fluctuations, compromising reproducibility. Herein, we propose a deep learning-powered colloidal digital SERS platform. This innovation converts SERS spectra into binary “ON/OFF” signals based on defined intensity thresholds, which allows single-molecule event visualization and reduces false positives. Through integration with deep learning, this platform enables detection of a broad range of analytes, unlimited by the lack of characteristic SERS peaks. Furthermore, we demonstrate its accuracy and reproducibility for studying AMBIC 1.1 mammalian cell culture media. These results highlight its rapidity, accuracy, and precision, paving the way for widespread adoption and scale-up as a novel PAT tool in biomanufacturing and diagnostics.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"183 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01071","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Maintaining consistent quality in biomanufacturing is essential for producing high-quality complex biologics. Yet, current process analytical technologies (PAT) often fall short in achieving rapid and accurate monitoring of small-molecule critical process parameters and critical quality attributes. Surface-enhanced Raman spectroscopy (SERS) holds great promise but faces challenges like intensity fluctuations, compromising reproducibility. Herein, we propose a deep learning-powered colloidal digital SERS platform. This innovation converts SERS spectra into binary “ON/OFF” signals based on defined intensity thresholds, which allows single-molecule event visualization and reduces false positives. Through integration with deep learning, this platform enables detection of a broad range of analytes, unlimited by the lack of characteristic SERS peaks. Furthermore, we demonstrate its accuracy and reproducibility for studying AMBIC 1.1 mammalian cell culture media. These results highlight its rapidity, accuracy, and precision, paving the way for widespread adoption and scale-up as a novel PAT tool in biomanufacturing and diagnostics.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.