Observing Li Nucleation at the Li Metal–Solid Electrolyte Interface in All-Solid-State Batteries

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-04-02 DOI:10.1021/acsnano.5c00816
Yun An, Taiping Hu, Quanquan Pang, Shenzhen Xu
{"title":"Observing Li Nucleation at the Li Metal–Solid Electrolyte Interface in All-Solid-State Batteries","authors":"Yun An, Taiping Hu, Quanquan Pang, Shenzhen Xu","doi":"10.1021/acsnano.5c00816","DOIUrl":null,"url":null,"abstract":"Benefiting from the significantly improved energy density and safety, all-solid-state lithium batteries (ASSLBs) are considered to be one of the most promising next-generation energy technologies. Their practical applications, however, are strongly impeded by Li dendrite formation. Despite this recognized challenge, a comprehensive understanding of the Li dendrite nucleation and formation mechanism remains elusive. In particular, the initial locations of Li dendrite formation are still ambiguous: do Li clusters form directly at the Li anode surface, inside the bulk solid electrolyte (SE), or within the solid-electrolyte interphase (SEI)? Here, based on the deep-potential molecular dynamics simulations combined with enhanced sampling techniques, we investigate the atomic-level mechanism of Li cluster nucleation and formation at the Li anode/SE interface. We observe that an isolated Li cluster initially forms inside the SEI between the Li<sub>6</sub>PS<sub>5</sub>Cl SE and the Li metal anode, located ∼1 nm away from the Li anode/SEI boundary. The local electronic structure of the spontaneously formed SEI is found to be a key factor enabling the Li cluster formation within the SEI, in which a significantly decreased band gap could facilitate electronic conduction through the SEI and reduce Li<sup>+</sup> ions to metallic Li atoms therein. Our work provides atomic-level insights into Li-dendrite nucleation at anode/SE interfaces in ASSLBs and could guide future design for developing Li-dendrite-inhibiting strategies.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"71 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00816","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Benefiting from the significantly improved energy density and safety, all-solid-state lithium batteries (ASSLBs) are considered to be one of the most promising next-generation energy technologies. Their practical applications, however, are strongly impeded by Li dendrite formation. Despite this recognized challenge, a comprehensive understanding of the Li dendrite nucleation and formation mechanism remains elusive. In particular, the initial locations of Li dendrite formation are still ambiguous: do Li clusters form directly at the Li anode surface, inside the bulk solid electrolyte (SE), or within the solid-electrolyte interphase (SEI)? Here, based on the deep-potential molecular dynamics simulations combined with enhanced sampling techniques, we investigate the atomic-level mechanism of Li cluster nucleation and formation at the Li anode/SE interface. We observe that an isolated Li cluster initially forms inside the SEI between the Li6PS5Cl SE and the Li metal anode, located ∼1 nm away from the Li anode/SEI boundary. The local electronic structure of the spontaneously formed SEI is found to be a key factor enabling the Li cluster formation within the SEI, in which a significantly decreased band gap could facilitate electronic conduction through the SEI and reduce Li+ ions to metallic Li atoms therein. Our work provides atomic-level insights into Li-dendrite nucleation at anode/SE interfaces in ASSLBs and could guide future design for developing Li-dendrite-inhibiting strategies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信