Removal of dibenzothiophene by extraction and catalytic oxidation using long- and short-channel SBA-15 containing Zr and Mo species

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Katarzyna Stawicka, Maciej Trejda, Aleksandra Rybka, Maria Ziolek
{"title":"Removal of dibenzothiophene by extraction and catalytic oxidation using long- and short-channel SBA-15 containing Zr and Mo species","authors":"Katarzyna Stawicka, Maciej Trejda, Aleksandra Rybka, Maria Ziolek","doi":"10.1039/d5dt00043b","DOIUrl":null,"url":null,"abstract":"Two different SBA-15 silicas with long and short channels, containing zirconium species, were prepared and used as supports for molybdenum additives. The resulting materials were characterized and tested as catalysts for extractive catalytic oxidative desulfurization (ECODS) of dibenzothiophene (DBT) using acetonitrile as a solvent and H<small><sub>2</sub></small>O<small><sub>2</sub></small> as an oxidant. The synthesis procedure for the zirconium-containing silicas influenced both the zirconium loading and its distribution, <em>i.e.</em>, whether it was incorporated into the framework or present in extra-framework positions. Additionally, the choice of support for molybdenum inclusion affected the amount of modifier loaded and its resistance to leaching, which collectively impacted the acidic and basic properties of the synthesized catalysts. The textural and surface properties of the materials were evaluated using low-temperature nitrogen adsorption/desorption, XRD, SEM-EDS, FT-IR-ATR, XPS, and UV-vis. The acidity and basicity of the samples were evaluated using FT-IR spectroscopy with pyridine adsorption/desorption and test reactions including 2-propanol dehydration/dehydrogenation and 2,5-hexanedione cyclization/dehydration. The catalytic activity was measured in ECODS. The Mo/ZrSBA-15-S catalyst demonstrated the best performance in DBT removal from the oil phase, achieving approximately 92% conversion of DBT within 120 minutes at 60 °C. This superior activity was attributed to the material's high acidity strength.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"197 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5dt00043b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Two different SBA-15 silicas with long and short channels, containing zirconium species, were prepared and used as supports for molybdenum additives. The resulting materials were characterized and tested as catalysts for extractive catalytic oxidative desulfurization (ECODS) of dibenzothiophene (DBT) using acetonitrile as a solvent and H2O2 as an oxidant. The synthesis procedure for the zirconium-containing silicas influenced both the zirconium loading and its distribution, i.e., whether it was incorporated into the framework or present in extra-framework positions. Additionally, the choice of support for molybdenum inclusion affected the amount of modifier loaded and its resistance to leaching, which collectively impacted the acidic and basic properties of the synthesized catalysts. The textural and surface properties of the materials were evaluated using low-temperature nitrogen adsorption/desorption, XRD, SEM-EDS, FT-IR-ATR, XPS, and UV-vis. The acidity and basicity of the samples were evaluated using FT-IR spectroscopy with pyridine adsorption/desorption and test reactions including 2-propanol dehydration/dehydrogenation and 2,5-hexanedione cyclization/dehydration. The catalytic activity was measured in ECODS. The Mo/ZrSBA-15-S catalyst demonstrated the best performance in DBT removal from the oil phase, achieving approximately 92% conversion of DBT within 120 minutes at 60 °C. This superior activity was attributed to the material's high acidity strength.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信