{"title":"Breaking the Electric-Dipole Selection Rule via a Plasmonic Nanocavity Excited by a k-Space Filter-Assisted Radial Vector Beam","authors":"Yueweiying Wang, Chao Meng, Chenyang Kong, Zhonglin Xie, Fanfan Lu, Lei Xu, Ting Mei, Wending Zhang","doi":"10.1021/acsphotonics.4c01220","DOIUrl":null,"url":null,"abstract":"Breaking the electric-dipole selection rule in molecular spectroscopy is of great significance for manipulating vibrational state transitions and developing unconventional photofunctions of molecules. In this study, a static plasmonic nanocavity composed of a gold (Au) nanosphere on a silver (Ag) substrate was excited using a radial vector beam with a tunable spatial frequency component. The resulting nanocavity-plasmonic mode has a significantly enhanced electric-field gradient to visualize the electrical-quadrupole transition in the molecule. The static plasmonic nanocavity is tunable by regulating the spatial frequency component of the excitation beam. Thus, the interaction between the electric field/electric-field gradient of the nanocavity-plasmonic mode and the molecular polarizabilities has been accurately identified. This innovative nanospectral platform provides unique opportunities for studying weak physical and chemical processes in molecules.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"58 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01220","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Breaking the electric-dipole selection rule in molecular spectroscopy is of great significance for manipulating vibrational state transitions and developing unconventional photofunctions of molecules. In this study, a static plasmonic nanocavity composed of a gold (Au) nanosphere on a silver (Ag) substrate was excited using a radial vector beam with a tunable spatial frequency component. The resulting nanocavity-plasmonic mode has a significantly enhanced electric-field gradient to visualize the electrical-quadrupole transition in the molecule. The static plasmonic nanocavity is tunable by regulating the spatial frequency component of the excitation beam. Thus, the interaction between the electric field/electric-field gradient of the nanocavity-plasmonic mode and the molecular polarizabilities has been accurately identified. This innovative nanospectral platform provides unique opportunities for studying weak physical and chemical processes in molecules.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.