Seung Ho Lee , Roemer Pott Hofstede , Adrián Noriega de la Colina , John H. Gunton , Joshua D. Bernstock , Giovanni Traverso
{"title":"Implantable systems for neurological chronotherapy","authors":"Seung Ho Lee , Roemer Pott Hofstede , Adrián Noriega de la Colina , John H. Gunton , Joshua D. Bernstock , Giovanni Traverso","doi":"10.1016/j.addr.2025.115574","DOIUrl":null,"url":null,"abstract":"<div><div>Implantable systems for neurological chronotherapy are poised to revolutionize the treatment of central nervous system diseases and disorders. These devices enable precise, time-controlled drug delivery aligned with the body’s circadian rhythms, optimizing therapeutic outcomes. By bypassing the blood–brain barrier, they achieve high local drug concentrations while minimizing systemic side effects, offering significant advantages for conditions where traditional therapies often fall short.</div><div>Platforms like SynchroMed II and CraniUS showcase this innovation, providing programmable delivery for conditions such as epilepsy and glioblastoma, with customizable profiles ranging from continuous infusion to timed bolus administration. Preclinical and clinical studies underscore the efficacy of aligning drug delivery with circadian rhythms, enhancing outcomes in chrono-chemotherapy and anti-epileptic treatments.</div><div>Despite their promise, challenges remain, including the invasiveness of implantation within the brain, device longevity, synchronization complexities, and cost(s). Accordingly, this review explores the current state of implantable neurological systems that may be leveraged for chronotherapy, their applications, limitations, and potential to transform neurological disease/disorder management.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"221 ","pages":"Article 115574"},"PeriodicalIF":15.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced drug delivery reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169409X25000596","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Implantable systems for neurological chronotherapy are poised to revolutionize the treatment of central nervous system diseases and disorders. These devices enable precise, time-controlled drug delivery aligned with the body’s circadian rhythms, optimizing therapeutic outcomes. By bypassing the blood–brain barrier, they achieve high local drug concentrations while minimizing systemic side effects, offering significant advantages for conditions where traditional therapies often fall short.
Platforms like SynchroMed II and CraniUS showcase this innovation, providing programmable delivery for conditions such as epilepsy and glioblastoma, with customizable profiles ranging from continuous infusion to timed bolus administration. Preclinical and clinical studies underscore the efficacy of aligning drug delivery with circadian rhythms, enhancing outcomes in chrono-chemotherapy and anti-epileptic treatments.
Despite their promise, challenges remain, including the invasiveness of implantation within the brain, device longevity, synchronization complexities, and cost(s). Accordingly, this review explores the current state of implantable neurological systems that may be leveraged for chronotherapy, their applications, limitations, and potential to transform neurological disease/disorder management.
期刊介绍:
The aim of the Journal is to provide a forum for the critical analysis of advanced drug and gene delivery systems and their applications in human and veterinary medicine. The Journal has a broad scope, covering the key issues for effective drug and gene delivery, from administration to site-specific delivery.
In general, the Journal publishes review articles in a Theme Issue format. Each Theme Issue provides a comprehensive and critical examination of current and emerging research on the design and development of advanced drug and gene delivery systems and their application to experimental and clinical therapeutics. The goal is to illustrate the pivotal role of a multidisciplinary approach to modern drug delivery, encompassing the application of sound biological and physicochemical principles to the engineering of drug delivery systems to meet the therapeutic need at hand. Importantly the Editorial Team of ADDR asks that the authors effectively window the extensive volume of literature, pick the important contributions and explain their importance, produce a forward looking identification of the challenges facing the field and produce a Conclusions section with expert recommendations to address the issues.