Hydrogen peroxide regulated split-type electrochemiluminescence sensing platform for non-invasive detection of gastric cancer-associated D-amino acids

IF 5.7 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Juan Li, Ming-Chun Lai, Ya-Meng Zhong, Ya-Ling Chen, Na Wu, Wei Chen, Hua-Ping Peng
{"title":"Hydrogen peroxide regulated split-type electrochemiluminescence sensing platform for non-invasive detection of gastric cancer-associated D-amino acids","authors":"Juan Li, Ming-Chun Lai, Ya-Meng Zhong, Ya-Ling Chen, Na Wu, Wei Chen, Hua-Ping Peng","doi":"10.1016/j.aca.2025.344010","DOIUrl":null,"url":null,"abstract":"Monitoring D-amino acids concentrations has essential implications for gastric cancer diagnosis and treatment, especially in the non-invasive detection of gastric cancer. However, it remains a challenge to establish a high-performance detection method for D-amino acids. Here, a highly sensitive and selective D-proline (D-Ala) ECL assay strategy via a 'turn-off-on' split-type electrochemiluminescence (ECL) platform has been proposed. We found that hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) could be used as an efficient etching agent to turn on the MnO<sub>2</sub>/gold nanocluster (AuNC)-based ECL nanoswitch platform. Based on abovementioned characteristics, we extended it to the D-amino acids assay since the enzymatic reaction between D-Ala and D-amino acid oxidase (DAAO) generates H<sub>2</sub>O<sub>2</sub>. Based on the abovementioned characteristics, this ECL sensing platform achieved a preferable linear-dependent curve in the detection range of 1.0×10 <sup><strong>−</strong>10</sup>∼1.0×10<sup><strong>−</strong>3</sup> mol L<sup><strong>−</strong>1</sup>, and realized the detection of D-Ala as low as 2.2×10<sup><strong>−</strong>11</sup> mol L<sup><strong>−</strong>1</sup> (S/N=3). Furthermore, the proposed ECL biosensor showed excellent selectivity, stability, and reproducibility. Together with its powerful performance, this strategy could test D-Ala in saliva samples, which suggested that this ECL assay platform shows great prospect in disease diagnosis. We ascribe the high sensitivity and good anti-interference capability of the sensor to the combination of specific enzyme catalysis reaction, high-efficiency split-type AuNC probe-based ECL technique and the highly etching efficiency of H<sub>2</sub>O<sub>2</sub> to MnO<sub>2</sub> nanomaterials on electrode surface. In our perception, this H<sub>2</sub>O<sub>2</sub> mediated split-type ECL sensing platform provides a viable tool in ECL based bioananlysis. Therefore, our proposed approach not only provides a strategy for developing a high-performance platform for D-Ala detection, but also establishes a framework for the detailed design and development of ECL platform for other biological assays.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"36 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2025.344010","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Monitoring D-amino acids concentrations has essential implications for gastric cancer diagnosis and treatment, especially in the non-invasive detection of gastric cancer. However, it remains a challenge to establish a high-performance detection method for D-amino acids. Here, a highly sensitive and selective D-proline (D-Ala) ECL assay strategy via a 'turn-off-on' split-type electrochemiluminescence (ECL) platform has been proposed. We found that hydrogen peroxide (H2O2) could be used as an efficient etching agent to turn on the MnO2/gold nanocluster (AuNC)-based ECL nanoswitch platform. Based on abovementioned characteristics, we extended it to the D-amino acids assay since the enzymatic reaction between D-Ala and D-amino acid oxidase (DAAO) generates H2O2. Based on the abovementioned characteristics, this ECL sensing platform achieved a preferable linear-dependent curve in the detection range of 1.0×10 10∼1.0×103 mol L1, and realized the detection of D-Ala as low as 2.2×1011 mol L1 (S/N=3). Furthermore, the proposed ECL biosensor showed excellent selectivity, stability, and reproducibility. Together with its powerful performance, this strategy could test D-Ala in saliva samples, which suggested that this ECL assay platform shows great prospect in disease diagnosis. We ascribe the high sensitivity and good anti-interference capability of the sensor to the combination of specific enzyme catalysis reaction, high-efficiency split-type AuNC probe-based ECL technique and the highly etching efficiency of H2O2 to MnO2 nanomaterials on electrode surface. In our perception, this H2O2 mediated split-type ECL sensing platform provides a viable tool in ECL based bioananlysis. Therefore, our proposed approach not only provides a strategy for developing a high-performance platform for D-Ala detection, but also establishes a framework for the detailed design and development of ECL platform for other biological assays.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytica Chimica Acta
Analytica Chimica Acta 化学-分析化学
CiteScore
10.40
自引率
6.50%
发文量
1081
审稿时长
38 days
期刊介绍: Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信