Ensuring superior learning outcomes and data security for authorized learner

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Jeongho Bang, Wooyeong Song, Kyujin Shin and Yong-Su Kim
{"title":"Ensuring superior learning outcomes and data security for authorized learner","authors":"Jeongho Bang, Wooyeong Song, Kyujin Shin and Yong-Su Kim","doi":"10.1088/2058-9565/adc501","DOIUrl":null,"url":null,"abstract":"The learner’s ability to generate a hypothesis that closely approximates the target function is crucial in machine learning. Achieving this requires sufficient data; however, unauthorized access by an eavesdropping learner can lead to security risks. Thus, it is important to ensure the performance of the ‘authorized’ learner by limiting the quality of the training data accessible to eavesdroppers. Unlike previous studies focusing on encryption or access controls, we provide a theorem to ensure superior learning outcomes exclusively for the authorized learner with quantum label encoding. In this context, we use the probably-approximately-correct learning framework and introduce the concept of learning probability to quantitatively assess learner performance. Our theorem allows the condition that, given a training dataset, an authorized learner is guaranteed to achieve a certain quality of learning outcome, while eavesdroppers are not. Notably, this condition can be constructed based only on the authorized-learning-only measurable quantities of the training data, i.e. its size and noise degree. We validate our theoretical proofs and predictions through convolutional neural networks image classification learning.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"16 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adc501","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The learner’s ability to generate a hypothesis that closely approximates the target function is crucial in machine learning. Achieving this requires sufficient data; however, unauthorized access by an eavesdropping learner can lead to security risks. Thus, it is important to ensure the performance of the ‘authorized’ learner by limiting the quality of the training data accessible to eavesdroppers. Unlike previous studies focusing on encryption or access controls, we provide a theorem to ensure superior learning outcomes exclusively for the authorized learner with quantum label encoding. In this context, we use the probably-approximately-correct learning framework and introduce the concept of learning probability to quantitatively assess learner performance. Our theorem allows the condition that, given a training dataset, an authorized learner is guaranteed to achieve a certain quality of learning outcome, while eavesdroppers are not. Notably, this condition can be constructed based only on the authorized-learning-only measurable quantities of the training data, i.e. its size and noise degree. We validate our theoretical proofs and predictions through convolutional neural networks image classification learning.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信