A Heterogeneous Attractor Model for Neural Dynamical Mechanism of Movement Preparation.

International journal of neural systems Pub Date : 2025-05-01 Epub Date: 2025-03-01 DOI:10.1142/S0129065725500194
Lining Yin, Lanyun Cui, Ying Yu, Qingyun Wang
{"title":"A Heterogeneous Attractor Model for Neural Dynamical Mechanism of Movement Preparation.","authors":"Lining Yin, Lanyun Cui, Ying Yu, Qingyun Wang","doi":"10.1142/S0129065725500194","DOIUrl":null,"url":null,"abstract":"<p><p>Preparatory activity is crucial for voluntary motor control, reducing reaction time and enhancing precision. To understand the neurodynamic mechanisms behind this, we construct a dynamical model within the motor cortex, which comprises coupled heterogeneous attractors to simulate delayed reaching tasks. This model replicates the neural activity patterns observed in the macaque motor cortex, within distinct attractor spaces for preparatory and executive activities. It can capture the transition from preparation to execution through shifts in an orthogonal subspace combined with a thresholding mechanism. Results show that the preparation duration modulates behavioral accuracy, with optimal preparation intervals enhancing performance. External inputs primarily shape the preparatory activity, while synaptic connections dominate execution. Our analysis of the network's multi-stable dynamics reveals that external inputs reshape the stable points of the heterogeneous attractor modules both before and after preparation, while synaptic strength affects dynamical stability and input sensitivity, allowing rapid and precise actions. Additionally, sensitivity to external perturbations decreases as preparatory time increases, emphasizing the importance of external inputs during preparation. Overall, this study provides insights into the neurodynamic mechanisms underlying the transition from motor preparation to execution and underscores the significance of preparatory activity for accurate motor control.</p>","PeriodicalId":94052,"journal":{"name":"International journal of neural systems","volume":"35 5","pages":"2550019"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of neural systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129065725500194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Preparatory activity is crucial for voluntary motor control, reducing reaction time and enhancing precision. To understand the neurodynamic mechanisms behind this, we construct a dynamical model within the motor cortex, which comprises coupled heterogeneous attractors to simulate delayed reaching tasks. This model replicates the neural activity patterns observed in the macaque motor cortex, within distinct attractor spaces for preparatory and executive activities. It can capture the transition from preparation to execution through shifts in an orthogonal subspace combined with a thresholding mechanism. Results show that the preparation duration modulates behavioral accuracy, with optimal preparation intervals enhancing performance. External inputs primarily shape the preparatory activity, while synaptic connections dominate execution. Our analysis of the network's multi-stable dynamics reveals that external inputs reshape the stable points of the heterogeneous attractor modules both before and after preparation, while synaptic strength affects dynamical stability and input sensitivity, allowing rapid and precise actions. Additionally, sensitivity to external perturbations decreases as preparatory time increases, emphasizing the importance of external inputs during preparation. Overall, this study provides insights into the neurodynamic mechanisms underlying the transition from motor preparation to execution and underscores the significance of preparatory activity for accurate motor control.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信