A new eggshell-derived calcium phosphate bioceramic for tissue engineering: cytotoxicity and histomorphometric study.

Acta cirurgica brasileira Pub Date : 2025-03-31 eCollection Date: 2025-01-01 DOI:10.1590/acb402625
Conrado Dias do Nascimento Neto, Laisa Kindely Ramos de Oliveira, Amy Brian Costa E Silva, Patrícia Roccon Bianchi, André Gustavo de Sousa Galdino, Daniela Nascimento Silva
{"title":"A new eggshell-derived calcium phosphate bioceramic for tissue engineering: cytotoxicity and histomorphometric study.","authors":"Conrado Dias do Nascimento Neto, Laisa Kindely Ramos de Oliveira, Amy Brian Costa E Silva, Patrícia Roccon Bianchi, André Gustavo de Sousa Galdino, Daniela Nascimento Silva","doi":"10.1590/acb402625","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate cytotoxicity and tissue repair of a new chicken eggshell-derived bioceramic (hydroxyapatite/dicalcium phosphate anhydrous-HA/DCPA).</p><p><strong>Methods: </strong>Cytotoxicity was evaluated in fibroblasts (L cell, L-929) by MTT test. Tissue repair of HA/DCPA was compared to HA/β-TCP bioceramic (Maxresorb-MXR). Two critical-sized bone defects (CSDs) were drilled in the calvarial of 24 Wistar rats and filled with one of the biomaterials. The animals were euthanized after 30, 60, and 90 days, and bone specimens were examined by histomorphometric analyses, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The percentages of newly formed bone, connective tissue, remaining biomaterial, and total tissue repair area were compared between groups using Student's t-test and analysis of variance (p ≤ 0.05).</p><p><strong>Results: </strong>HA/DCPA did not exhibit any cytotoxicity. CSDs contained newly formed bone from the defect margins and from ossification centers interspersed throughout the biomaterials. At 30 days, HA/DCPA group had a significantly larger total tissue repair area than MXR group (p = 0.047). No differences were observed between groups regarding variables studied (p > 0.05).</p><p><strong>Conclusion: </strong>HA/DCPA is non-cytotoxic. This cement promoted new bone formation and tissue filling of the entire defect area with degree of biomaterial degradation similar to HA/β-TCP, proving to be equally suitable and successful for bone regeneration.</p>","PeriodicalId":93850,"journal":{"name":"Acta cirurgica brasileira","volume":"40 ","pages":"e402625"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11960574/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta cirurgica brasileira","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/acb402625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To evaluate cytotoxicity and tissue repair of a new chicken eggshell-derived bioceramic (hydroxyapatite/dicalcium phosphate anhydrous-HA/DCPA).

Methods: Cytotoxicity was evaluated in fibroblasts (L cell, L-929) by MTT test. Tissue repair of HA/DCPA was compared to HA/β-TCP bioceramic (Maxresorb-MXR). Two critical-sized bone defects (CSDs) were drilled in the calvarial of 24 Wistar rats and filled with one of the biomaterials. The animals were euthanized after 30, 60, and 90 days, and bone specimens were examined by histomorphometric analyses, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The percentages of newly formed bone, connective tissue, remaining biomaterial, and total tissue repair area were compared between groups using Student's t-test and analysis of variance (p ≤ 0.05).

Results: HA/DCPA did not exhibit any cytotoxicity. CSDs contained newly formed bone from the defect margins and from ossification centers interspersed throughout the biomaterials. At 30 days, HA/DCPA group had a significantly larger total tissue repair area than MXR group (p = 0.047). No differences were observed between groups regarding variables studied (p > 0.05).

Conclusion: HA/DCPA is non-cytotoxic. This cement promoted new bone formation and tissue filling of the entire defect area with degree of biomaterial degradation similar to HA/β-TCP, proving to be equally suitable and successful for bone regeneration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信