Ales Kotalik, David M Vock, Nancy E Sherwood, Brian P Hobbs, Joseph S Koopmeiners
{"title":"Within-trial data borrowing for sequential multiple assignment randomized trials.","authors":"Ales Kotalik, David M Vock, Nancy E Sherwood, Brian P Hobbs, Joseph S Koopmeiners","doi":"10.1093/biostatistics/kxaf003","DOIUrl":null,"url":null,"abstract":"<p><p>The Sequential Multiple Assignment Randomized Trial (SMART) is a complex trial design that involves randomizing a single participant multiple times in a sequential manner. This results in the branching nature of a SMART, which represents several distinct groups defined by different combinations of treatments, response statuses, etc. A SMART can then answer various scientific questions of interest, eg, the optimal dynamic treatment regime (DTR) for treating a chronic illness, what intervention to offer first, and what intervention to offer to nonresponders (or suboptimal responders). However, the analysis of a SMART can suffer from low precision, as the potentially widely branching structure can lead to reduced sample sizes in some groups of interest. In this paper, we propose a novel analysis method for a SMART in which dynamic borrowing is used to borrow strength across groups with similar expected outcomes, thus providing increased precision for the estimation of the expected outcomes of DTRs. We apply our method to a SMART evaluating various weight loss strategies using a binary endpoint of clinically significant weight loss and show by simulation that our method can improve the precision of the estimated expected outcome of a DTR, aid in the identification of the optimal DTR, and produce a clustering analysis of DTRs embedded in a SMART.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":"26 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963638/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxaf003","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Sequential Multiple Assignment Randomized Trial (SMART) is a complex trial design that involves randomizing a single participant multiple times in a sequential manner. This results in the branching nature of a SMART, which represents several distinct groups defined by different combinations of treatments, response statuses, etc. A SMART can then answer various scientific questions of interest, eg, the optimal dynamic treatment regime (DTR) for treating a chronic illness, what intervention to offer first, and what intervention to offer to nonresponders (or suboptimal responders). However, the analysis of a SMART can suffer from low precision, as the potentially widely branching structure can lead to reduced sample sizes in some groups of interest. In this paper, we propose a novel analysis method for a SMART in which dynamic borrowing is used to borrow strength across groups with similar expected outcomes, thus providing increased precision for the estimation of the expected outcomes of DTRs. We apply our method to a SMART evaluating various weight loss strategies using a binary endpoint of clinically significant weight loss and show by simulation that our method can improve the precision of the estimated expected outcome of a DTR, aid in the identification of the optimal DTR, and produce a clustering analysis of DTRs embedded in a SMART.
期刊介绍:
Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.