M S Zobaer, Nastaran Lotfi, Carli M Domenico, Clarissa Hoffman, Luca Perotti, Daoyun Ji, Yuri Dabaghian
{"title":"Theta Oscillons in Behaving Rats.","authors":"M S Zobaer, Nastaran Lotfi, Carli M Domenico, Clarissa Hoffman, Luca Perotti, Daoyun Ji, Yuri Dabaghian","doi":"10.1523/JNEUROSCI.0164-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Recently discovered constituents of the brain waves-the <i>oscillons</i>-provide a high-resolution representation of the extracellular field dynamics. Here, we study the most robust, highest-amplitude oscillons recorded in actively behaving male rats, which underlie the traditional <i>θ</i>-waves. The resemblances between <i>θ</i>-oscillons and the conventional <i>θ</i>-waves are manifested primarily at the ballpark level-mean frequencies, mean amplitudes, and bandwidths. In addition, both hippocampal and cortical oscillons exhibit a number of intricate, behavior-attuned, transient properties that suggest a new vantage point for understanding the <i>θ</i>-rhythms' structure, origins and functions. In particular, we demonstrate that oscillons are frequency-modulated waves, with speed-controlled parameters, embedded into a weak noise background. We also use a basic model of neuronal synchronization to contextualize and to interpret the oscillons. The results suggest that the synchronicity levels in physiological networks are fairly low and are modulated by the animal's physiological state.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12079740/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.0164-24.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recently discovered constituents of the brain waves-the oscillons-provide a high-resolution representation of the extracellular field dynamics. Here, we study the most robust, highest-amplitude oscillons recorded in actively behaving male rats, which underlie the traditional θ-waves. The resemblances between θ-oscillons and the conventional θ-waves are manifested primarily at the ballpark level-mean frequencies, mean amplitudes, and bandwidths. In addition, both hippocampal and cortical oscillons exhibit a number of intricate, behavior-attuned, transient properties that suggest a new vantage point for understanding the θ-rhythms' structure, origins and functions. In particular, we demonstrate that oscillons are frequency-modulated waves, with speed-controlled parameters, embedded into a weak noise background. We also use a basic model of neuronal synchronization to contextualize and to interpret the oscillons. The results suggest that the synchronicity levels in physiological networks are fairly low and are modulated by the animal's physiological state.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles