Circadian regulation of key physiological processes by the RITMO1 clock protein in the marine diatom Phaeodactylum tricornutum.

IF 9.4 1区 生物学 Q1 Agricultural and Biological Sciences
New Phytologist Pub Date : 2025-04-02 DOI:10.1111/nph.70099
Alessandro Manzotti, Raphaël Monteil, Soizic Cheminant Navarro, Dany Croteau, Lucie Charreton, Antoine Hoguin, Nils Fabian Strumpen, Denis Jallet, Fayza Daboussi, Peter G Kroth, François-Yves Bouget, Marianne Jaubert, Benjamin Bailleul, Jean-Pierre Bouly, Angela Falciatore
{"title":"Circadian regulation of key physiological processes by the RITMO1 clock protein in the marine diatom Phaeodactylum tricornutum.","authors":"Alessandro Manzotti, Raphaël Monteil, Soizic Cheminant Navarro, Dany Croteau, Lucie Charreton, Antoine Hoguin, Nils Fabian Strumpen, Denis Jallet, Fayza Daboussi, Peter G Kroth, François-Yves Bouget, Marianne Jaubert, Benjamin Bailleul, Jean-Pierre Bouly, Angela Falciatore","doi":"10.1111/nph.70099","DOIUrl":null,"url":null,"abstract":"<p><p>Phasing biological and physiological processes to periodic light-dark cycles is crucial for the life of most organisms. Marine diatoms, as many phytoplanktonic species, exhibit biological rhythms, yet their molecular timekeepers remain largely uncharacterized. Recently, the bHLH-PAS protein RITMO1 has been proposed to act as a regulator of diatom circadian rhythms. In this study, we first determined the physiological conditions to monitor circadian clock activity and its perturbation in the diatom model species Phaeodactylum tricornutum by using cell fluorescence as a circadian output. Employing ectopic overexpression, targeted gene mutagenesis, and functional complementation, we then investigated the role of RITMO1 in various circadian processes. Our data reveal that RITMO1 significantly influences the P. tricornutum circadian rhythms not only of cellular fluorescence, but also of photosynthesis and of the expression of clock-controlled genes, including transcription factors and putative clock input/output components. RITMO1 effects on rhythmicity are unambiguously detectable under free-running conditions. By uncovering the complex regulation of biological rhythms in P. tricornutum, these findings advance our understanding of the endogenous factors controlling diatom physiological responses to environmental changes. They also offer initial insights into the mechanistic principles of oscillator functions in a major group of phytoplankton, which remain largely unexplored in chronobiology.</p>","PeriodicalId":48887,"journal":{"name":"New Phytologist","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70099","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Phasing biological and physiological processes to periodic light-dark cycles is crucial for the life of most organisms. Marine diatoms, as many phytoplanktonic species, exhibit biological rhythms, yet their molecular timekeepers remain largely uncharacterized. Recently, the bHLH-PAS protein RITMO1 has been proposed to act as a regulator of diatom circadian rhythms. In this study, we first determined the physiological conditions to monitor circadian clock activity and its perturbation in the diatom model species Phaeodactylum tricornutum by using cell fluorescence as a circadian output. Employing ectopic overexpression, targeted gene mutagenesis, and functional complementation, we then investigated the role of RITMO1 in various circadian processes. Our data reveal that RITMO1 significantly influences the P. tricornutum circadian rhythms not only of cellular fluorescence, but also of photosynthesis and of the expression of clock-controlled genes, including transcription factors and putative clock input/output components. RITMO1 effects on rhythmicity are unambiguously detectable under free-running conditions. By uncovering the complex regulation of biological rhythms in P. tricornutum, these findings advance our understanding of the endogenous factors controlling diatom physiological responses to environmental changes. They also offer initial insights into the mechanistic principles of oscillator functions in a major group of phytoplankton, which remain largely unexplored in chronobiology.

海洋硅藻 Phaeodactylum tricornutum 中 RITMO1 时钟蛋白对关键生理过程的昼夜节律调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Phytologist
New Phytologist PLANT SCIENCES-
CiteScore
17.60
自引率
5.30%
发文量
728
审稿时长
1 months
期刊介绍: New Phytologist is a leading publication that showcases exceptional and groundbreaking research in plant science and its practical applications. With a focus on five distinct sections - Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology - the journal covers a wide array of topics ranging from cellular processes to the impact of global environmental changes. We encourage the use of interdisciplinary approaches, and our content is structured to reflect this. Our journal acknowledges the diverse techniques employed in plant science, including molecular and cell biology, functional genomics, modeling, and system-based approaches, across various subfields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信