Noor Rahman, Muzammil Khan, Imran Khan, Jawad Khan, Youngmoon Lee
{"title":"Robust ensemble classifier for advanced synthetic aperture radar target classification in diverse operational conditions.","authors":"Noor Rahman, Muzammil Khan, Imran Khan, Jawad Khan, Youngmoon Lee","doi":"10.1038/s41598-025-93536-x","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents an enhanced ensemble classification framework for Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) under diverse operational conditions, including Standard Operating Conditions (SOC) and Extended Operating Conditions (EOC). The proposed method integrates the strengths of Residual Neural Networks (ResNet) replacing Convolutional Neural Networks (CNN), Support Vector Machines (SVM), and template matching, leveraging majority voting to combine their complementary capabilities. The ensemble framework achieves improved robustness and classification accuracy across varied scenarios. The methodology employs ResNet, a deep learning architecture known for its superior feature extraction and classification capabilities, replacing AlexNet to address limitations in generalization and consistency. ResNet demonstrated better performance with average accuracies of 92.67% under SOC and 88.9% under EOC, showing consistent results across all six target classes, as compared to the CNN-based ensemble approach with average accuracies of 90.30% under SOC and 87.22% under EOC. The SVM is employed for its robustness in handling overfitting and classifying features extracted from 16 region properties. Template matching is included for its resilience in challenging conditions where deep learning techniques may underperform. Experimental validation using the MSTAR dataset, a standard benchmark for SAR ATR, highlights the effectiveness of this ensemble approach. The results confirm significant improvements in classification accuracy and robustness over individual classifiers, demonstrating the practical applicability of the ensemble approach to real-world SAR ATR challenges. This research advances SAR ATR by addressing critical challenges, including noise, occlusion, and variations in viewing angles while achieving high classification performance under diverse conditions. The integration of ResNet further enhances the framework's adaptability and reliability.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"11053"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-93536-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an enhanced ensemble classification framework for Synthetic Aperture Radar (SAR) Automatic Target Recognition (ATR) under diverse operational conditions, including Standard Operating Conditions (SOC) and Extended Operating Conditions (EOC). The proposed method integrates the strengths of Residual Neural Networks (ResNet) replacing Convolutional Neural Networks (CNN), Support Vector Machines (SVM), and template matching, leveraging majority voting to combine their complementary capabilities. The ensemble framework achieves improved robustness and classification accuracy across varied scenarios. The methodology employs ResNet, a deep learning architecture known for its superior feature extraction and classification capabilities, replacing AlexNet to address limitations in generalization and consistency. ResNet demonstrated better performance with average accuracies of 92.67% under SOC and 88.9% under EOC, showing consistent results across all six target classes, as compared to the CNN-based ensemble approach with average accuracies of 90.30% under SOC and 87.22% under EOC. The SVM is employed for its robustness in handling overfitting and classifying features extracted from 16 region properties. Template matching is included for its resilience in challenging conditions where deep learning techniques may underperform. Experimental validation using the MSTAR dataset, a standard benchmark for SAR ATR, highlights the effectiveness of this ensemble approach. The results confirm significant improvements in classification accuracy and robustness over individual classifiers, demonstrating the practical applicability of the ensemble approach to real-world SAR ATR challenges. This research advances SAR ATR by addressing critical challenges, including noise, occlusion, and variations in viewing angles while achieving high classification performance under diverse conditions. The integration of ResNet further enhances the framework's adaptability and reliability.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.