[Optimization of fermentation processes in intelligent biomanufacturing: on online monitoring, artificial intelligence, and digital twin technologies].
{"title":"[Optimization of fermentation processes in intelligent biomanufacturing: on online monitoring, artificial intelligence, and digital twin technologies].","authors":"Jianye Xia, Dongjiao Long, Min Chen, Anxiang Chen","doi":"10.13345/j.cjb.250032","DOIUrl":null,"url":null,"abstract":"<p><p>As a strategic emerging industry, biomanufacturing faces core challenges in achieving precise optimization and efficient scale-up of fermentation processes. This review focuses on two critical aspects of fermentation-real-time sensing and intelligent control-and systematically summarizes the advancements in online monitoring technologies, artificial intelligence (AI)-driven optimization strategies, and digital twin applications. First, online monitoring technologies, ranging from conventional parameters (e.g., temperature, pH, and dissolved oxygen) to advanced sensing systems (e.g., online viable cell sensors, spectroscopy, and exhaust gas analysis), provide a data foundation for real-time microbial metabolic state characterization. Second, conventional static control relying on expert experience is evolving toward AI-driven dynamic optimization. The integration of machine learning technologies (e.g., artificial neural networks and support vector machines) and genetic algorithms significantly enhances the regulation efficiency of feeding strategies and process parameters. Finally, digital twin technology, integrating real-time sensing data with multi-scale models (e.g., cellular metabolic kinetics and reactor hydrodynamics), offers a novel paradigm for lifecycle optimization and rational scale-up of fermentation. Future advancements in closed-loop control systems based on intelligent sensing and digital twin are expected to accelerate the industrialization of innovative achievements in synthetic biology and drive biomanufacturing toward higher efficiency, intelligence, and sustainability.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 3","pages":"1179-1196"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.250032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
As a strategic emerging industry, biomanufacturing faces core challenges in achieving precise optimization and efficient scale-up of fermentation processes. This review focuses on two critical aspects of fermentation-real-time sensing and intelligent control-and systematically summarizes the advancements in online monitoring technologies, artificial intelligence (AI)-driven optimization strategies, and digital twin applications. First, online monitoring technologies, ranging from conventional parameters (e.g., temperature, pH, and dissolved oxygen) to advanced sensing systems (e.g., online viable cell sensors, spectroscopy, and exhaust gas analysis), provide a data foundation for real-time microbial metabolic state characterization. Second, conventional static control relying on expert experience is evolving toward AI-driven dynamic optimization. The integration of machine learning technologies (e.g., artificial neural networks and support vector machines) and genetic algorithms significantly enhances the regulation efficiency of feeding strategies and process parameters. Finally, digital twin technology, integrating real-time sensing data with multi-scale models (e.g., cellular metabolic kinetics and reactor hydrodynamics), offers a novel paradigm for lifecycle optimization and rational scale-up of fermentation. Future advancements in closed-loop control systems based on intelligent sensing and digital twin are expected to accelerate the industrialization of innovative achievements in synthetic biology and drive biomanufacturing toward higher efficiency, intelligence, and sustainability.
期刊介绍:
Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.