[Machine learning-aided design of synthetic biological parts and circuits].

Q4 Biochemistry, Genetics and Molecular Biology
Ruichao Mao, Baojun Wang
{"title":"[Machine learning-aided design of synthetic biological parts and circuits].","authors":"Ruichao Mao, Baojun Wang","doi":"10.13345/j.cjb.240605","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic biology is an emerging interdisciplinary field at the convergence of biology, engineering, and computer science. It employs a bottom-up approach to progressively design biological parts, devices, and circuits, aiming to create artificial biological systems not found in nature or to redesign existing biological systems for specific purposes. With the rapid development of the synthetic biology industry, there is an increasing demand for large complex genetic circuits. However, the traditional trial-and-error methods, heavily reliant on empirical knowledge, have limited efficiency and success rates of parts/circuits construction, thereby impeding the innovation and technology translation for synthetic biology. These limitations have prompted a paradigm shift from labor-intensive, experience-driven trial-and-error models towards standardized, intelligent engineering approaches. Machine learning, capable of uncovering hidden structures and relationships within biological data, offers robust support for the intelligent design of synthetic biological parts and genetic circuits. Here, we review commonly used machine learning algorithms and analyze their typical applications in designing biological parts (e.g., synthetic promoters, RNA regulatory elements, and transcription factors) and simple genetic circuits. Additionally, we discuss the primary challenges in machine learning-aided design and propose potential solutions. Lastly, we envision the future trend of integrating machine learning with synthetic biological system design, highlighting the importance of interdisciplinary collaboration.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 3","pages":"1023-1051"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic biology is an emerging interdisciplinary field at the convergence of biology, engineering, and computer science. It employs a bottom-up approach to progressively design biological parts, devices, and circuits, aiming to create artificial biological systems not found in nature or to redesign existing biological systems for specific purposes. With the rapid development of the synthetic biology industry, there is an increasing demand for large complex genetic circuits. However, the traditional trial-and-error methods, heavily reliant on empirical knowledge, have limited efficiency and success rates of parts/circuits construction, thereby impeding the innovation and technology translation for synthetic biology. These limitations have prompted a paradigm shift from labor-intensive, experience-driven trial-and-error models towards standardized, intelligent engineering approaches. Machine learning, capable of uncovering hidden structures and relationships within biological data, offers robust support for the intelligent design of synthetic biological parts and genetic circuits. Here, we review commonly used machine learning algorithms and analyze their typical applications in designing biological parts (e.g., synthetic promoters, RNA regulatory elements, and transcription factors) and simple genetic circuits. Additionally, we discuss the primary challenges in machine learning-aided design and propose potential solutions. Lastly, we envision the future trend of integrating machine learning with synthetic biological system design, highlighting the importance of interdisciplinary collaboration.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sheng wu gong cheng xue bao = Chinese journal of biotechnology
Sheng wu gong cheng xue bao = Chinese journal of biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
1.50
自引率
0.00%
发文量
298
期刊介绍: Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信