Xiaosong Li, Tong Shen, Cesar Luis Garcia, Ingrid Teich, Yang Chen, Jin Chen, Amos Tiereyangn Kabo-Bah, Ziyu Yang, Xiaoxia Jia, Qi Lu, Mandakh Nyamtseren
{"title":"A 30-meter resolution global land productivity dynamics dataset from 2013 to 2022.","authors":"Xiaosong Li, Tong Shen, Cesar Luis Garcia, Ingrid Teich, Yang Chen, Jin Chen, Amos Tiereyangn Kabo-Bah, Ziyu Yang, Xiaoxia Jia, Qi Lu, Mandakh Nyamtseren","doi":"10.1038/s41597-025-04883-3","DOIUrl":null,"url":null,"abstract":"<p><p>Land degradation is one of the most severe environmental challenges globally. To address its adverse impacts, the United Nations endorsed the Land Degradation Neutrality (SDG 15.3) within the Sustainable Development Goals in 2015. Trends in land productivity is a key sub-indicator for reporting the progress toward SDG 15.3. Currently, the highest spatial resolution of global land productivity dynamics (LPD) products is 250-meter, which seriously hamper the SDG 15.3 reporting and intervention at the fine scale. Generating higher spatial resolution product faces significant challenges, including massive data processing, image cloud pollution, incompatible spatiotemporal resolution. This study, leveraging Google Earth Engine platform and utilizing Landsat-8 and MODIS imagery, employed the Gap-filling and Savitzky-Golay filtering algorithm and advanced spatiotemporal filtering method to obtain a high-quality 30-meter NDVI dataset, then the global 30-meter LPD product from 2013 to 2022 was generated by using the FAO-WOCAT methodology and compared against multiple datasets. This is the first global scale 30-meter LPD dataset, which provides essential data support for SDG 15.3 monitoring and reporting globally.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"555"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961751/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04883-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Land degradation is one of the most severe environmental challenges globally. To address its adverse impacts, the United Nations endorsed the Land Degradation Neutrality (SDG 15.3) within the Sustainable Development Goals in 2015. Trends in land productivity is a key sub-indicator for reporting the progress toward SDG 15.3. Currently, the highest spatial resolution of global land productivity dynamics (LPD) products is 250-meter, which seriously hamper the SDG 15.3 reporting and intervention at the fine scale. Generating higher spatial resolution product faces significant challenges, including massive data processing, image cloud pollution, incompatible spatiotemporal resolution. This study, leveraging Google Earth Engine platform and utilizing Landsat-8 and MODIS imagery, employed the Gap-filling and Savitzky-Golay filtering algorithm and advanced spatiotemporal filtering method to obtain a high-quality 30-meter NDVI dataset, then the global 30-meter LPD product from 2013 to 2022 was generated by using the FAO-WOCAT methodology and compared against multiple datasets. This is the first global scale 30-meter LPD dataset, which provides essential data support for SDG 15.3 monitoring and reporting globally.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.